Cargando…
The Effect of Habitat on Insect Movements: Experimental Evidence from Wild-Caught Butterflies
SIMPLE SUMMARY: Habitat loss profoundly influences animal behaviour, impacting the long-term viability of species. In this study, we explored the link between the flight capabilities of the woodland-specialist butterfly, Limenitis camilla, and the spatial-temporal connectivity of its main habitat—br...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531938/ https://www.ncbi.nlm.nih.gov/pubmed/37754705 http://dx.doi.org/10.3390/insects14090737 |
Sumario: | SIMPLE SUMMARY: Habitat loss profoundly influences animal behaviour, impacting the long-term viability of species. In this study, we explored the link between the flight capabilities of the woodland-specialist butterfly, Limenitis camilla, and the spatial-temporal connectivity of its main habitat—broadleaved forests. We examined the shifts in forest functional connectivity in Wallonia (Belgium) in recent decades, alongside the exploratory flight patterns of female L. camilla. Our findings revealed that butterflies from fragmented forests spent more time on movement-related behaviours than those from well-connected habitats. This indicates a potential evolutionary adaptation favouring behaviours that help locate suitable egg-laying sites in populations that have experienced habitat shrinkage and increased isolation over the past 20–40 generations. ABSTRACT: There is broad evidence that the main driver of the ongoing biodiversity crisis is land-use change, which reduces and fragments habitats. The consequence of habitat fragmentation on behavioural responses of fitness-related traits in insects have been so far understudied. In herbivorous insects, oviposition-related behaviours determine access to larval food, and the fate of the next generation. We present a pilot study to assess differences in behaviours related to movement and oviposition in Limenitis camilla butterflies from Wallonia (Belgium), one of the most fragmented regions in Europe. We first quantified variation in functional habitat connectivity across Wallonia and found that fragmented habitats had more abundant, but less evenly distributed host plants of L. camilla. Secondly, we quantified the behaviours of field-caught L. camilla females originating from habitats with contrasted landscape connectivity in an outdoor experimental setting. We found differences in behaviours related to flight investment: butterflies from fragmented woodlands spent more time in departing flight, which we associated with dispersal, than butterflies from homogenous woodlands. Although results from this study should be interpreted with caution given the limited sample size, they provide valuable insights for the advancement of behavioural research that aims to assess the effects of global changes on insects. |
---|