Cargando…
Limitations of Out-of-Distribution Detection in 3D Medical Image Segmentation
Deep learning models perform unreliably when the data come from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection methods help to identify such data samples, preventing erroneous predictions. In this paper, we furthe...
Autores principales: | Vasiliuk, Anton, Frolova, Daria, Belyaev, Mikhail, Shirokikh, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532230/ https://www.ncbi.nlm.nih.gov/pubmed/37754955 http://dx.doi.org/10.3390/jimaging9090191 |
Ejemplares similares
-
Accelerating 3D Medical Image Segmentation by Adaptive Small-Scale Target Localization
por: Shirokikh, Boris, et al.
Publicado: (2021) -
Adaptation to CT Reconstruction Kernels by Enforcing Cross-Domain Feature Maps Consistency
por: Shimovolos, Stanislav, et al.
Publicado: (2022) -
Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation
por: González, Camila, et al.
Publicado: (2022) -
Grayscale medical image segmentation method based on 2D&3D object detection with deep learning
por: Ge, Yunfei, et al.
Publicado: (2022) -
Semi-Supervised Medical Image Segmentation with Co-Distribution Alignment
por: Wang, Tao, et al.
Publicado: (2023)