Cargando…
The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process
Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal–host interactions. One of the esse...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532283/ https://www.ncbi.nlm.nih.gov/pubmed/37754980 http://dx.doi.org/10.3390/jof9090872 |
_version_ | 1785111919694184448 |
---|---|
author | Escobar-Niño, Almudena Harzen, Anne Stolze, Sara C. Nakagami, Hirofumi Fernández-Acero, Francisco J. |
author_facet | Escobar-Niño, Almudena Harzen, Anne Stolze, Sara C. Nakagami, Hirofumi Fernández-Acero, Francisco J. |
author_sort | Escobar-Niño, Almudena |
collection | PubMed |
description | Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal–host interactions. One of the essential research areas in this field is the characterization protein profile of EVs since plant fungal pathogens rely heavily on secreted proteins to invade their hosts. However, EVs of Botrytis cinerea are little known, which is one of the most devastating phytopathogenic fungi. The present study has two main objectives: the characterization of B. cinerea EVs proteome changes under two pathogenic conditions and the description of their potential role during the infective process. All the experimental procedure was conducted in B. cinerea growing in a minimal salt medium supplemented with glucose as a constitutive stage and deproteinized tomato cell walls (TCW) as a virulence inductor. The isolation of EVs was performed by differential centrifugation, filtration, ultrafiltration, and sucrose cushion ultracentrifugation. EVs fractions were visualised by TEM using negative staining. Proteomic analysis of EVs cargo was addressed by LC-MS/MS. The methodology used allowed the correct isolation of B. cinerea EVs and the identification of a high number of EV proteins, including potential EV markers. The isolated EVs displayed differences in morphology under both assayed conditions. GO analysis of EV proteins showed enrichment in cell wall metabolism and proteolysis under TCW. KEGG analysis also showed the difference in EVs function under both conditions, highlighting the presence of potential virulence/pathogenic factors implicated in cell wall metabolism, among others. This work describes the first evidence of EVs protein cargo adaptation in B. cinerea, which seems to play an essential role in its infection process, sharing crucial functions with the conventional secretion pathways. |
format | Online Article Text |
id | pubmed-10532283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105322832023-09-28 The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process Escobar-Niño, Almudena Harzen, Anne Stolze, Sara C. Nakagami, Hirofumi Fernández-Acero, Francisco J. J Fungi (Basel) Article Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal–host interactions. One of the essential research areas in this field is the characterization protein profile of EVs since plant fungal pathogens rely heavily on secreted proteins to invade their hosts. However, EVs of Botrytis cinerea are little known, which is one of the most devastating phytopathogenic fungi. The present study has two main objectives: the characterization of B. cinerea EVs proteome changes under two pathogenic conditions and the description of their potential role during the infective process. All the experimental procedure was conducted in B. cinerea growing in a minimal salt medium supplemented with glucose as a constitutive stage and deproteinized tomato cell walls (TCW) as a virulence inductor. The isolation of EVs was performed by differential centrifugation, filtration, ultrafiltration, and sucrose cushion ultracentrifugation. EVs fractions were visualised by TEM using negative staining. Proteomic analysis of EVs cargo was addressed by LC-MS/MS. The methodology used allowed the correct isolation of B. cinerea EVs and the identification of a high number of EV proteins, including potential EV markers. The isolated EVs displayed differences in morphology under both assayed conditions. GO analysis of EV proteins showed enrichment in cell wall metabolism and proteolysis under TCW. KEGG analysis also showed the difference in EVs function under both conditions, highlighting the presence of potential virulence/pathogenic factors implicated in cell wall metabolism, among others. This work describes the first evidence of EVs protein cargo adaptation in B. cinerea, which seems to play an essential role in its infection process, sharing crucial functions with the conventional secretion pathways. MDPI 2023-08-24 /pmc/articles/PMC10532283/ /pubmed/37754980 http://dx.doi.org/10.3390/jof9090872 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Escobar-Niño, Almudena Harzen, Anne Stolze, Sara C. Nakagami, Hirofumi Fernández-Acero, Francisco J. The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process |
title | The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process |
title_full | The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process |
title_fullStr | The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process |
title_full_unstemmed | The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process |
title_short | The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process |
title_sort | adaptation of botrytis cinerea extracellular vesicles proteome to surrounding conditions: revealing new tools for its infection process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532283/ https://www.ncbi.nlm.nih.gov/pubmed/37754980 http://dx.doi.org/10.3390/jof9090872 |
work_keys_str_mv | AT escobarninoalmudena theadaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT harzenanne theadaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT stolzesarac theadaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT nakagamihirofumi theadaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT fernandezacerofranciscoj theadaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT escobarninoalmudena adaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT harzenanne adaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT stolzesarac adaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT nakagamihirofumi adaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess AT fernandezacerofranciscoj adaptationofbotrytiscinereaextracellularvesiclesproteometosurroundingconditionsrevealingnewtoolsforitsinfectionprocess |