Cargando…

Prediction of Dynamic Behavior of Large-Scale Ground Using 1 g Shaking Table Test and Numerical Analysis

Earthquake disasters can threaten human life and cause property damage. The dynamic analysis of the ground performance of the seismic field is essential. In this study, numerical analysis is used to predict the dynamic behavior and response analysis of large-scale models under different seismic wave...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Yong, Jeong, Sugeun, Kim, Daehyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532498/
https://www.ncbi.nlm.nih.gov/pubmed/37763371
http://dx.doi.org/10.3390/ma16186093
Descripción
Sumario:Earthquake disasters can threaten human life and cause property damage. The dynamic analysis of the ground performance of the seismic field is essential. In this study, numerical analysis is used to predict the dynamic behavior and response analysis of large-scale models under different seismic waves. Firstly, the accuracy of numerical analysis is verified by a 1 g shaking table test under the same size. Then, according to the similarity law, numerical analysis is used to obtain the dynamic behavior of the model at different scales. The results show that the 1 g shaking table test results are in good agreement with the numerical analysis results and that the numerical analysis can predict the dynamic behavior of the scale model. The 1 g shaking table test provides a valuable method for evaluating the numerical analysis, which captures the complex behavior and resolves uncertainties, ultimately leading to more robust and reliable analyses.