Cargando…

Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes

Sulfonated poly(ether ether ketone) (SPEEK) materials are promising candidates for replacing Nafion™ in applications such as proton exchange membrane (PEM) and direct methanol fuel cells. SPEEK membranes have several advantages such as low cost, thermal and radiation stability and controllable physi...

Descripción completa

Detalles Bibliográficos
Autores principales: Pakalniete, Laura Dace, Maskova, Elizabete, Zabolockis, Rudolfs Janis, Avotina, Liga, Sprugis, Einars, Reinholds, Ingars, Rzepna, Magdalena, Vaivars, Guntars, Pajuste, Elina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532506/
https://www.ncbi.nlm.nih.gov/pubmed/37763376
http://dx.doi.org/10.3390/ma16186098
_version_ 1785111976605646848
author Pakalniete, Laura Dace
Maskova, Elizabete
Zabolockis, Rudolfs Janis
Avotina, Liga
Sprugis, Einars
Reinholds, Ingars
Rzepna, Magdalena
Vaivars, Guntars
Pajuste, Elina
author_facet Pakalniete, Laura Dace
Maskova, Elizabete
Zabolockis, Rudolfs Janis
Avotina, Liga
Sprugis, Einars
Reinholds, Ingars
Rzepna, Magdalena
Vaivars, Guntars
Pajuste, Elina
author_sort Pakalniete, Laura Dace
collection PubMed
description Sulfonated poly(ether ether ketone) (SPEEK) materials are promising candidates for replacing Nafion™ in applications such as proton exchange membrane (PEM) and direct methanol fuel cells. SPEEK membranes have several advantages such as low cost, thermal and radiation stability and controllable physicochemical and mechanical properties, which depend on the degree of sulfonation (DS). Commercial PEEK was homogenously sulfonated up to a DS of 60–90% and the membranes were prepared using a solvent casting method. Part of the samples were irradiated with a 10 MeV electron beam up to a 500 kGy dose to assess the ionizing radiation-induced effects. Both non-irradiated and irradiated membranes were characterized by Fourier Transformation infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), proton nuclear magnetic resonance ((1)H-NMR) spectroscopy, electrochemical impedance analysis and, for the first time for non-irradiated membranes, by spectrophotometric analysis with Cr(III). The above-mentioned methods for application for DS assessment were compared. The aim of this study is to compare different methods used for the determination of the DS of SPEEK membranes before and after high-dose irradiation. It was observed that irradiated membranes presented a higher value of DS. The appearance of different new signals in (1)H-NMR and FT-IR spectra of irradiated membranes indicated that the effects of radiation induced changes in the structure of SPEEK materials. The good correlation of Cr(III) absorption and SPEEK DS up to 80% indicates that the spectrophotometric method is a comparable tool for the characterization of SPEEK membranes.
format Online
Article
Text
id pubmed-10532506
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105325062023-09-28 Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes Pakalniete, Laura Dace Maskova, Elizabete Zabolockis, Rudolfs Janis Avotina, Liga Sprugis, Einars Reinholds, Ingars Rzepna, Magdalena Vaivars, Guntars Pajuste, Elina Materials (Basel) Article Sulfonated poly(ether ether ketone) (SPEEK) materials are promising candidates for replacing Nafion™ in applications such as proton exchange membrane (PEM) and direct methanol fuel cells. SPEEK membranes have several advantages such as low cost, thermal and radiation stability and controllable physicochemical and mechanical properties, which depend on the degree of sulfonation (DS). Commercial PEEK was homogenously sulfonated up to a DS of 60–90% and the membranes were prepared using a solvent casting method. Part of the samples were irradiated with a 10 MeV electron beam up to a 500 kGy dose to assess the ionizing radiation-induced effects. Both non-irradiated and irradiated membranes were characterized by Fourier Transformation infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), proton nuclear magnetic resonance ((1)H-NMR) spectroscopy, electrochemical impedance analysis and, for the first time for non-irradiated membranes, by spectrophotometric analysis with Cr(III). The above-mentioned methods for application for DS assessment were compared. The aim of this study is to compare different methods used for the determination of the DS of SPEEK membranes before and after high-dose irradiation. It was observed that irradiated membranes presented a higher value of DS. The appearance of different new signals in (1)H-NMR and FT-IR spectra of irradiated membranes indicated that the effects of radiation induced changes in the structure of SPEEK materials. The good correlation of Cr(III) absorption and SPEEK DS up to 80% indicates that the spectrophotometric method is a comparable tool for the characterization of SPEEK membranes. MDPI 2023-09-06 /pmc/articles/PMC10532506/ /pubmed/37763376 http://dx.doi.org/10.3390/ma16186098 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pakalniete, Laura Dace
Maskova, Elizabete
Zabolockis, Rudolfs Janis
Avotina, Liga
Sprugis, Einars
Reinholds, Ingars
Rzepna, Magdalena
Vaivars, Guntars
Pajuste, Elina
Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes
title Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes
title_full Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes
title_fullStr Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes
title_full_unstemmed Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes
title_short Critical Evaluation of the Methods for the Characterization of the Degree of Sulfonation for Electron Beam Irradiated and Non-Irradiated Sulfonated Poly(ether ether ketone) Membranes
title_sort critical evaluation of the methods for the characterization of the degree of sulfonation for electron beam irradiated and non-irradiated sulfonated poly(ether ether ketone) membranes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532506/
https://www.ncbi.nlm.nih.gov/pubmed/37763376
http://dx.doi.org/10.3390/ma16186098
work_keys_str_mv AT pakalnietelauradace criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT maskovaelizabete criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT zabolockisrudolfsjanis criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT avotinaliga criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT sprugiseinars criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT reinholdsingars criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT rzepnamagdalena criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT vaivarsguntars criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes
AT pajusteelina criticalevaluationofthemethodsforthecharacterizationofthedegreeofsulfonationforelectronbeamirradiatedandnonirradiatedsulfonatedpolyetheretherketonemembranes