Cargando…

Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro

Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains en...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubiak, Anita, Pajewska-Szmyt, Martyna, Kotula, Martyna, Leśniewski, Bartosz, Voronkina, Alona, Rahimi, Parvaneh, Falahi, Sedigheh, Heimler, Korbinian, Rogoll, Anika, Vogt, Carla, Ereskovsky, Alexander, Simon, Paul, Langer, Enrico, Springer, Armin, Förste, Maik, Charitos, Alexandros, Joseph, Yvonne, Jesionowski, Teofil, Ehrlich, Hermann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532518/
https://www.ncbi.nlm.nih.gov/pubmed/37755073
http://dx.doi.org/10.3390/md21090460
_version_ 1785111979466162176
author Kubiak, Anita
Pajewska-Szmyt, Martyna
Kotula, Martyna
Leśniewski, Bartosz
Voronkina, Alona
Rahimi, Parvaneh
Falahi, Sedigheh
Heimler, Korbinian
Rogoll, Anika
Vogt, Carla
Ereskovsky, Alexander
Simon, Paul
Langer, Enrico
Springer, Armin
Förste, Maik
Charitos, Alexandros
Joseph, Yvonne
Jesionowski, Teofil
Ehrlich, Hermann
author_facet Kubiak, Anita
Pajewska-Szmyt, Martyna
Kotula, Martyna
Leśniewski, Bartosz
Voronkina, Alona
Rahimi, Parvaneh
Falahi, Sedigheh
Heimler, Korbinian
Rogoll, Anika
Vogt, Carla
Ereskovsky, Alexander
Simon, Paul
Langer, Enrico
Springer, Armin
Förste, Maik
Charitos, Alexandros
Joseph, Yvonne
Jesionowski, Teofil
Ehrlich, Hermann
author_sort Kubiak, Anita
collection PubMed
description Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as “Iron-Spongin”, which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of “Iron-spongin” but also opens the door to other applications of these multifunctional materials.
format Online
Article
Text
id pubmed-10532518
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105325182023-09-28 Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro Kubiak, Anita Pajewska-Szmyt, Martyna Kotula, Martyna Leśniewski, Bartosz Voronkina, Alona Rahimi, Parvaneh Falahi, Sedigheh Heimler, Korbinian Rogoll, Anika Vogt, Carla Ereskovsky, Alexander Simon, Paul Langer, Enrico Springer, Armin Förste, Maik Charitos, Alexandros Joseph, Yvonne Jesionowski, Teofil Ehrlich, Hermann Mar Drugs Article Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as “Iron-Spongin”, which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of “Iron-spongin” but also opens the door to other applications of these multifunctional materials. MDPI 2023-08-22 /pmc/articles/PMC10532518/ /pubmed/37755073 http://dx.doi.org/10.3390/md21090460 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kubiak, Anita
Pajewska-Szmyt, Martyna
Kotula, Martyna
Leśniewski, Bartosz
Voronkina, Alona
Rahimi, Parvaneh
Falahi, Sedigheh
Heimler, Korbinian
Rogoll, Anika
Vogt, Carla
Ereskovsky, Alexander
Simon, Paul
Langer, Enrico
Springer, Armin
Förste, Maik
Charitos, Alexandros
Joseph, Yvonne
Jesionowski, Teofil
Ehrlich, Hermann
Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro
title Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro
title_full Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro
title_fullStr Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro
title_full_unstemmed Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro
title_short Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro
title_sort spongin as a unique 3d template for the development of functional iron-based composites using biomimetic approach in vitro
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532518/
https://www.ncbi.nlm.nih.gov/pubmed/37755073
http://dx.doi.org/10.3390/md21090460
work_keys_str_mv AT kubiakanita sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT pajewskaszmytmartyna sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT kotulamartyna sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT lesniewskibartosz sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT voronkinaalona sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT rahimiparvaneh sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT falahisedigheh sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT heimlerkorbinian sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT rogollanika sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT vogtcarla sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT ereskovskyalexander sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT simonpaul sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT langerenrico sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT springerarmin sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT forstemaik sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT charitosalexandros sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT josephyvonne sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT jesionowskiteofil sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro
AT ehrlichhermann sponginasaunique3dtemplateforthedevelopmentoffunctionalironbasedcompositesusingbiomimeticapproachinvitro