Cargando…
Comparing Machine Learning Classifiers for Predicting Hospital Readmission of Heart Failure Patients in Rwanda
High rates of hospital readmission and the cost of treating heart failure (HF) are significant public health issues globally and in Rwanda. Using machine learning (ML) to predict which patients are at high risk for HF hospital readmission 20 days after their discharge has the potential to improve HF...
Autores principales: | Rizinde, Theogene, Ngaruye, Innocent, Cahill, Nathan D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532623/ https://www.ncbi.nlm.nih.gov/pubmed/37763160 http://dx.doi.org/10.3390/jpm13091393 |
Ejemplares similares
-
Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia
por: Chilyabanyama, Obvious Nchimunya, et al.
Publicado: (2022) -
Machine learning based readmission and mortality prediction in heart failure patients
por: Sabouri, Maziar, et al.
Publicado: (2023) -
The 30-days hospital readmission risk in diabetic patients: predictive modeling with machine learning classifiers
por: Shang, Yujuan, et al.
Publicado: (2021) -
The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
por: Soliman, Amira, et al.
Publicado: (2023) -
Heart Failure Emergency Readmission Prediction Using Stacking Machine Learning Model
por: Rahman, Md. Sohanur, et al.
Publicado: (2023)