Cargando…
Performance of Deep-Learning Solutions on Lung Nodule Malignancy Classification: A Systematic Review
Objective: For several years, computer technology has been utilized to diagnose lung nodules. When compared to traditional machine learning methods for image processing, deep-learning methods can improve the accuracy of lung nodule diagnosis by avoiding the laborious pre-processing step of the pictu...
Autores principales: | Liang, Hailun, Hu, Meili, Ma, Yuxin, Yang, Lei, Chen, Jie, Lou, Liwei, Chen, Chen, Xiao, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532719/ https://www.ncbi.nlm.nih.gov/pubmed/37763314 http://dx.doi.org/10.3390/life13091911 |
Ejemplares similares
-
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
por: Song, QingZeng, et al.
Publicado: (2017) -
A Novel Deep Learning Model to Distinguish Malignant Versus Benign Solid Lung Nodules
por: Wang, Shuwen, et al.
Publicado: (2022) -
Classification of Lung Nodules Based on Deep Residual Networks and Migration Learning
por: Wu, Panpan, et al.
Publicado: (2020) -
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
por: Lv, Enhui, et al.
Publicado: (2021) -
An attention-based deep learning network for lung nodule malignancy discrimination
por: Liu, Gang, et al.
Publicado: (2023)