Cargando…
ABCC Transporter Gene MoABC-R1 Is Associated with Pyraclostrobin Tolerance in Magnaporthe oryzae
Rice blast is a worldwide fungal disease that poses a threat to food security. Fungicide treatment is one of the most effective methods to control rice blast disease. However, the emergence of fungicide tolerance hampers the control efforts against rice blast. ATP-binding cassette (ABC) transporters...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532721/ https://www.ncbi.nlm.nih.gov/pubmed/37755025 http://dx.doi.org/10.3390/jof9090917 |
Sumario: | Rice blast is a worldwide fungal disease that poses a threat to food security. Fungicide treatment is one of the most effective methods to control rice blast disease. However, the emergence of fungicide tolerance hampers the control efforts against rice blast. ATP-binding cassette (ABC) transporters have been found to be crucial in multidrug tolerance in various phytopathogenic fungi. This study investigated the association between polymorphisms in 50 ABC transporters and pyraclostrobin sensitivity in 90 strains of rice blast fungus. As a result, we identified MoABC-R1, a gene associated with fungicide tolerance. MoABC-R1 belongs to the ABCC-type transporter families. Deletion mutants of MoABC-R1, abc-r1, exhibited high sensitivity to pyraclostrobin at the concentration of 0.01 μg/mL. Furthermore, the pathogenicity of abc-r1 was significantly diminished. These findings indicate that MoABC-R1 not only plays a pivotal role in fungicide tolerance but also regulates the pathogenicity of rice blast. Interestingly, the combination of MoABC-R1 deletion with fungicide treatment resulted in a three-fold increase in control efficiency against rice blast. This discovery highlights MoABC-R1 as a potential target gene for the management of rice blast. |
---|