Cargando…

Effects of Alloying Elements and Mechanical Alloying on Characteristics of WVTaTiCr Refractory High-Entropy Alloys

Refractory high-entropy alloys (RHEAs) are among the promising candidates for the design of structural materials in advanced nuclear energy systems. The effects of Cr, V, Ta, and Ti elements and ball milling on the microstructural evolution and mechanical properties of model RHEAs were investigated....

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chun-Liang, Lin, Jyun-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532749/
https://www.ncbi.nlm.nih.gov/pubmed/37763470
http://dx.doi.org/10.3390/ma16186194
Descripción
Sumario:Refractory high-entropy alloys (RHEAs) are among the promising candidates for the design of structural materials in advanced nuclear energy systems. The effects of Cr, V, Ta, and Ti elements and ball milling on the microstructural evolution and mechanical properties of model RHEAs were investigated. The results show that W-rich BCC1 and Ta-rich BCC2 solid solution phases were generated after a long milling duration. After high-temperature sintering, the (Cr, Ta)-rich phase associated with the Laves phase was observed in the Cr-containing model RHEAs. In addition, a high level of Ti, Ta, and V contents promoted the in situ formation of oxide particles in the alloys. Complex TiTa(2)O(7) and Ta(2)VO(6) oxide phases were identified by TEM, which suggests a solid-state reaction of Ti-O, Ta-O, and V-O subjected to high-energy ball milling. The oxide particles are uniformly dispersed in the BCC matrix, which can result in dispersion strengthening and the enhancement of mechanical properties.