Cargando…
Using Different Types of Artificial Neural Networks to Classify 2D Matrix Codes and Their Rotations—A Comparative Study
Artificial neural networks can solve various tasks in computer vision, such as image classification, object detection, and general recognition. Our comparative study deals with four types of artificial neural networks—multilayer perceptrons, probabilistic neural networks, radial basis function neura...
Autores principales: | Karrach, Ladislav, Pivarčiová, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532761/ https://www.ncbi.nlm.nih.gov/pubmed/37754952 http://dx.doi.org/10.3390/jimaging9090188 |
Ejemplares similares
-
Comparative Study of Data Matrix Codes Localization and Recognition Methods
por: Karrach, Ladislav, et al.
Publicado: (2021) -
Identification of QR Code Perspective Distortion Based on Edge Directions and Edge Projections Analysis
por: Karrach, Ladislav, et al.
Publicado: (2020) -
Artificial neural network classifier predicts neuroblastoma patients’ outcome
por: Cangelosi, Davide, et al.
Publicado: (2016) -
Artificial neural network EMG classifier for functional hand grasp
movements prediction
por: Gandolla, Marta, et al.
Publicado: (2016) -
Classifying Parkinson’s Disease Based on Acoustic Measures Using Artificial Neural Networks
por: Berus, Lucijano, et al.
Publicado: (2018)