Cargando…
Application of Artificial Intelligence for Surface Roughness Prediction of Additively Manufactured Components
Additive manufacturing has gained significant popularity from a manufacturing perspective due to its potential for improving production efficiency. However, ensuring consistent product quality within predetermined equipment, cost, and time constraints remains a persistent challenge. Surface roughnes...
Autores principales: | Batu, Temesgen, Lemu, Hirpa G., Shimels, Hailu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532807/ https://www.ncbi.nlm.nih.gov/pubmed/37763543 http://dx.doi.org/10.3390/ma16186266 |
Ejemplares similares
-
Minimization of Surface Roughness and Temperature during Turning of Aluminum 6061 Using Response Surface Methodology and Desirability Function Analysis
por: Gutema, Endalkachew Mosisa, et al.
Publicado: (2022) -
Prediction of Metal Additively Manufactured Surface Roughness Using Deep Neural Network
por: So, Min Seop, et al.
Publicado: (2022) -
Evaluation of additive manufacturing of sand cores in terms of the resulting surface roughness
por: Gawronová, Martina, et al.
Publicado: (2022) -
Low-Roughness-Surface Additive Manufacturing of Metal-Wire Feeding with Small Power
por: Li, Bobo, et al.
Publicado: (2021) -
Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts
por: Alfieri, Vittorio, et al.
Publicado: (2016)