Cargando…

Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Risk in Patients with Chronic Kidney Disease without Previous Cardiac Pathology

Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the clonal expansion of hematopoietic stem cells carrying certain genes associated with an increased risk of hematological malignancies. Our study analyzes the influence of CHIP on the risk of heart disease and cardiovascular event...

Descripción completa

Detalles Bibliográficos
Autores principales: Kislikova, Maria, Lopez, Maria Ana Batlle, Salinas, Francisco Javier Freire, Blanco, José Antonio Parra, Molina, Maria Pilar García-Berbel, Fernandez, Alejandro Aguilera, Haces, Vicente Celestino Piñera, Unzueta, Maria Teresa García, Hernández, Adalberto Benito, Millan, Juan Carlos Ruiz San, Rodrigo Calabia, Emilio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532913/
https://www.ncbi.nlm.nih.gov/pubmed/37763205
http://dx.doi.org/10.3390/life13091801
Descripción
Sumario:Clonal hematopoiesis of indeterminate potential (CHIP) is defined by the clonal expansion of hematopoietic stem cells carrying certain genes associated with an increased risk of hematological malignancies. Our study analyzes the influence of CHIP on the risk of heart disease and cardiovascular events in a population with chronic kidney disease (CKD). A total of 128 patients were prospectively followed up for 18 months to detect major cardiovascular events (MACE). To detect the presence of silent heart disease, troponin I, NT-Pro-BNP, and coronary calcification were measured. A massive sequencing was performed to detect CHIP. A total of 24.2% of the patients presented CHIP, including that which was only pathogenic. The most frequently affected gene was TET2 (21.1%). Using multivariate logistic regression analysis, the presence of CHIP was not related to coronary calcification (OR 0.387, 95% CI 0.142–1.058, p = 0.387), nor was it related to troponin I or NT-Pro-BNP. A total of nine patients developed major cardiovascular events. Patients with CHIP did not have a higher risk of major cardiovascular events, although patients with DNMT3A did have a higher risk (HR 6.637, 95% CI 1.443–30.533, p = 0.015), independent of other variables. We did not find that CHIP was associated with a greater risk of silent heart disease or cardiovascular events, although those affected by DNMT3a, analyzed independently, were associated with a greater number of cardiovascular events.