Cargando…

Identification of Colon Immune Cell Marker Genes Using Machine Learning Methods

Immune cell infiltration that occurs at the site of colon tumors influences the course of cancer. Different immune cell compositions in the microenvironment lead to different immune responses and different therapeutic effects. This study analyzed single-cell RNA sequencing data in a normal colon wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yong, Zhang, Yuhang, Ren, Jingxin, Feng, Kaiyan, Li, Zhandong, Huang, Tao, Cai, Yudong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532943/
https://www.ncbi.nlm.nih.gov/pubmed/37763280
http://dx.doi.org/10.3390/life13091876
Descripción
Sumario:Immune cell infiltration that occurs at the site of colon tumors influences the course of cancer. Different immune cell compositions in the microenvironment lead to different immune responses and different therapeutic effects. This study analyzed single-cell RNA sequencing data in a normal colon with the aim of screening genetic markers of 25 candidate immune cell types and revealing quantitative differences between them. The dataset contains 25 classes of immune cells, 41,650 cells in total, and each cell is expressed by 22,164 genes at the expression level. They were fed into a machine learning-based stream. The five feature ranking algorithms (last absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, minimum redundancy maximum relevance, and random forest) were first used to analyze the importance of gene features, yielding five feature lists. Then, incremental feature selection and two classification algorithms (decision tree and random forest) were combined to filter the most important genetic markers from each list. For different immune cell subtypes, their marker genes, such as KLRB1 in CD4 T cells, RPL30 in B cell IGA plasma cells, and JCHAIN in IgG producing B cells, were identified. They were confirmed to be differentially expressed in different immune cells and involved in immune processes. In addition, quantitative rules were summarized by using the decision tree algorithm to distinguish candidate immune cell types. These results provide a reference for exploring the cell composition of the colon cancer microenvironment and for clinical immunotherapy.