Cargando…

Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter

Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of sinters are known...

Descripción completa

Detalles Bibliográficos
Autores principales: Szymański, Paweł, Popielarski, Paweł, Czarnecka-Komorowska, Dorota, Sika, Robert, Gawdzińska, Katarzyna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532971/
https://www.ncbi.nlm.nih.gov/pubmed/37763389
http://dx.doi.org/10.3390/ma16186106
_version_ 1785112087064739840
author Szymański, Paweł
Popielarski, Paweł
Czarnecka-Komorowska, Dorota
Sika, Robert
Gawdzińska, Katarzyna
author_facet Szymański, Paweł
Popielarski, Paweł
Czarnecka-Komorowska, Dorota
Sika, Robert
Gawdzińska, Katarzyna
author_sort Szymański, Paweł
collection PubMed
description Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of sinters are known for having excellent abrasive properties, which makes them an attractive material in certain fields of technology. The biggest problem in their production process is their low ability to infiltrate ceramics with alloys and consequently the difficulty of filling a ceramic preform. The castability of such composites has not yet been researched in detail. The aim of this study was to create aluminum metal matrix composite castings based on aluminum alloys (AlSi11) reinforced with an Al(2)O(3) sinter preform using a Castability Trials spiral mold, and then to determine the degree of saturation with the liquid metal of the produced ceramic shaped body (Castability Trials spiral). For the selected AlSi11 alloy, the liquidus (Tl) and solidus (Ts) temperatures were determined by performing thermal-derivation analysis during cooling, which is Tl—579.3 °C and Ts—573.9 °C. The resultant pressure necessary for the infiltration process was estimated for the reinforcement capillaries with the following dimensions: 10, 15, 20, 25, 30 and 35 microns. The following values were used to determine the capillary pressure (Pk): surface tension of the alloy—σ = 840 mN/m; the extreme wetting angle of the reinforcement by the metal—θ = 136°. It has been experimentally confirmed that for the vacuum saturation process, the estimated resultant pressure enables saturation of reinforcement with capillaries larger than 25 microns, provided that the alloy temperature does not drop lower than the infiltration temperature. After the experiment, the time and route of the liquid metal flow in the spiral were determined. On the basis of the obtained values, a simulation was developed and initial assumptions such as saturation time, alloy temperature, reinforcement and mold temperature were verified. The energy balance showed that the saturation limit temperature was Tk = 580.7 °C for the reinforcement temperature of 575 °C. In contrast to the above, the assumption that the temperature of the metal after equalizing the temperature of the composite components must be higher than the liquidus temperature (Tliq = 579.3 °C) for the aluminum alloy used must be fulfilled. After the experiment, the time and path of the liquid metal flow in the spiral were determined. Then, on the basis of the obtained values, a simulation was developed, and the initial assumptions (saturation time and temperature) were verified.
format Online
Article
Text
id pubmed-10532971
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105329712023-09-28 Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter Szymański, Paweł Popielarski, Paweł Czarnecka-Komorowska, Dorota Sika, Robert Gawdzińska, Katarzyna Materials (Basel) Article Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of sinters are known for having excellent abrasive properties, which makes them an attractive material in certain fields of technology. The biggest problem in their production process is their low ability to infiltrate ceramics with alloys and consequently the difficulty of filling a ceramic preform. The castability of such composites has not yet been researched in detail. The aim of this study was to create aluminum metal matrix composite castings based on aluminum alloys (AlSi11) reinforced with an Al(2)O(3) sinter preform using a Castability Trials spiral mold, and then to determine the degree of saturation with the liquid metal of the produced ceramic shaped body (Castability Trials spiral). For the selected AlSi11 alloy, the liquidus (Tl) and solidus (Ts) temperatures were determined by performing thermal-derivation analysis during cooling, which is Tl—579.3 °C and Ts—573.9 °C. The resultant pressure necessary for the infiltration process was estimated for the reinforcement capillaries with the following dimensions: 10, 15, 20, 25, 30 and 35 microns. The following values were used to determine the capillary pressure (Pk): surface tension of the alloy—σ = 840 mN/m; the extreme wetting angle of the reinforcement by the metal—θ = 136°. It has been experimentally confirmed that for the vacuum saturation process, the estimated resultant pressure enables saturation of reinforcement with capillaries larger than 25 microns, provided that the alloy temperature does not drop lower than the infiltration temperature. After the experiment, the time and route of the liquid metal flow in the spiral were determined. On the basis of the obtained values, a simulation was developed and initial assumptions such as saturation time, alloy temperature, reinforcement and mold temperature were verified. The energy balance showed that the saturation limit temperature was Tk = 580.7 °C for the reinforcement temperature of 575 °C. In contrast to the above, the assumption that the temperature of the metal after equalizing the temperature of the composite components must be higher than the liquidus temperature (Tliq = 579.3 °C) for the aluminum alloy used must be fulfilled. After the experiment, the time and path of the liquid metal flow in the spiral were determined. Then, on the basis of the obtained values, a simulation was developed, and the initial assumptions (saturation time and temperature) were verified. MDPI 2023-09-07 /pmc/articles/PMC10532971/ /pubmed/37763389 http://dx.doi.org/10.3390/ma16186106 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Szymański, Paweł
Popielarski, Paweł
Czarnecka-Komorowska, Dorota
Sika, Robert
Gawdzińska, Katarzyna
Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter
title Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter
title_full Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter
title_fullStr Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter
title_full_unstemmed Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter
title_short Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al(2)O(3) Sinter
title_sort determination of saturation conditions of the aluminum metal matrix composites reinforced with al(2)o(3) sinter
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532971/
https://www.ncbi.nlm.nih.gov/pubmed/37763389
http://dx.doi.org/10.3390/ma16186106
work_keys_str_mv AT szymanskipaweł determinationofsaturationconditionsofthealuminummetalmatrixcompositesreinforcedwithal2o3sinter
AT popielarskipaweł determinationofsaturationconditionsofthealuminummetalmatrixcompositesreinforcedwithal2o3sinter
AT czarneckakomorowskadorota determinationofsaturationconditionsofthealuminummetalmatrixcompositesreinforcedwithal2o3sinter
AT sikarobert determinationofsaturationconditionsofthealuminummetalmatrixcompositesreinforcedwithal2o3sinter
AT gawdzinskakatarzyna determinationofsaturationconditionsofthealuminummetalmatrixcompositesreinforcedwithal2o3sinter