Cargando…

microRNA as a Maternal Marker for Prenatal Stress-Associated ASD, Evidence from a Murine Model

Autism Spectrum Disorder (ASD) has been associated with a complex interplay between genetic and environmental factors. Prenatal stress exposure has been identified as a possible risk factor, although most stress-exposed pregnancies do not result in ASD. The serotonin transporter (SERT) gene has been...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Taeseon, King, Candice, Ahmed, Nick I., Cordes, Madison, Nistala, Saatvika, Will, Matthew J., Bloomer, Clark, Kibiryeva, Nataliya, Rivera, Rocio M., Talebizadeh, Zohreh, Beversdorf, David Q.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533003/
https://www.ncbi.nlm.nih.gov/pubmed/37763179
http://dx.doi.org/10.3390/jpm13091412
Descripción
Sumario:Autism Spectrum Disorder (ASD) has been associated with a complex interplay between genetic and environmental factors. Prenatal stress exposure has been identified as a possible risk factor, although most stress-exposed pregnancies do not result in ASD. The serotonin transporter (SERT) gene has been linked to stress reactivity, and the presence of the SERT short (S)-allele has been shown to mediate the association between maternal stress exposure and ASD. In a mouse model, we investigated the effects of prenatal stress exposure and maternal SERT genotype on offspring behavior and explored its association with maternal microRNA (miRNA) expression during pregnancy. Pregnant female mice were divided into four groups based on genotype (wildtype or SERT heterozygous knockout (Sert-het)) and the presence or absence of chronic variable stress (CVS) during pregnancy. Offspring behavior was assessed at 60 days old (PD60) using the three-chamber test, open field test, elevated plus-maze test, and marble-burying test. We found that the social preference index (SPI) of SERT-het/stress offspring was significantly lower than that of wildtype control offspring, indicating a reduced preference for social interaction on social approach, specifically for males. SERT-het/stress offspring also showed significantly more frequent grooming behavior compared to wildtype controls, specifically for males, suggesting elevated repetitive behavior. We profiled miRNA expression in maternal blood samples collected at embryonic day 21 (E21) and identified three miRNAs (mmu-miR-7684-3p, mmu-miR-5622-3p, mmu-miR-6900-3p) that were differentially expressed in the SERT-het/stress group compared to all other groups. These findings suggest that maternal SERT genotype and prenatal stress exposure interact to influence offspring behavior, and that maternal miRNA expression late in pregnancy may serve as a potential marker of a particular subtype of ASD pathogenesis.