Cargando…
Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm
Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning,...
Autores principales: | Khouy, Mohammed, Jabrane, Younes, Ameur, Mustapha, Hajjam El Hassani, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533074/ https://www.ncbi.nlm.nih.gov/pubmed/37763066 http://dx.doi.org/10.3390/jpm13091298 |
Ejemplares similares
-
A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection
por: Sraitih, Mohamed, et al.
Publicado: (2022) -
An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
por: Sraitih, Mohamed, et al.
Publicado: (2021) -
Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
por: Lee, Bumshik, et al.
Publicado: (2020) -
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
por: Zhao, Tongtong, et al.
Publicado: (2023) -
Modified U-NET Architecture for Segmentation of Skin Lesion
por: Anand, Vatsala, et al.
Publicado: (2022)