Cargando…
Defect Classification for Additive Manufacturing with Machine Learning
Additive manufacturing offers significant design freedom and the ability to selectively influence material properties. However, conventional processes like laser powder bed fusion for metals may result in internal defects, such as pores, which profoundly affect the mechanical characteristics of the...
Autores principales: | Altmann, Mika León, Benthien, Thiemo, Ellendt, Nils, Toenjes, Anastasiya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533092/ https://www.ncbi.nlm.nih.gov/pubmed/37763520 http://dx.doi.org/10.3390/ma16186242 |
Ejemplares similares
-
Programmable Density of Laser Additive Manufactured Parts by Considering an Inverse Problem
por: Altmann, Mika León, et al.
Publicado: (2022) -
Feature-based volumetric defect classification in metal additive manufacturing
por: Poudel, Arun, et al.
Publicado: (2022) -
Improving Manufacturing Applications of Machine Learning by Understanding Defect Classification and the Critical Error Threshold
por: Blondheim, David
Publicado: (2021) -
Design and Additive Manufacturing of Porous Sound Absorbers—A Machine-Learning Approach
por: Kuschmitz, Sebastian, et al.
Publicado: (2021) -
End-to-end deep learning framework for printed circuit board manufacturing defect classification
por: Bhattacharya, Abhiroop, et al.
Publicado: (2022)