Cargando…
Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat
Despite the well-documented role of biochar in promoting soil quality and crop productivity, the underlying biological mechanisms remain poorly understood. Here, we explored the effects of straw biochar on soil microbiome in the rhizosphere from wheat using metagenomic sequencing. Our results showed...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533193/ https://www.ncbi.nlm.nih.gov/pubmed/37763247 http://dx.doi.org/10.3390/life13091843 |
_version_ | 1785112140010487808 |
---|---|
author | Gong, Xin Li, Sixian Wu, Zelu Alhaj Hamoud, Yousef Shaghaleh, Hiba Kalkhajeh, Yusef Kianpoor Si, Chenxiao Zhu, Lin Ma, Chao |
author_facet | Gong, Xin Li, Sixian Wu, Zelu Alhaj Hamoud, Yousef Shaghaleh, Hiba Kalkhajeh, Yusef Kianpoor Si, Chenxiao Zhu, Lin Ma, Chao |
author_sort | Gong, Xin |
collection | PubMed |
description | Despite the well-documented role of biochar in promoting soil quality and crop productivity, the underlying biological mechanisms remain poorly understood. Here, we explored the effects of straw biochar on soil microbiome in the rhizosphere from wheat using metagenomic sequencing. Our results showed that straw return decreased the yields of wheat, while the straw biochar return increased the wheat yields. Further, both the richness and community composition confirmed different effects of the straw return and straw biochar return. The straw biochar return also resulted in greater rhizosphere effects from wheat, represented by resource availability, including soil organic carbon, soil total nitrogen, available phosphorus, and available potassium. The rhizosphere effects from wheat, represented by microbial metabolism genes involved in carbon, nitrogen, phosphorus, and potassium cycling, however, were decreased by straw biochar returning. In addition, the rhizosphere effects from nitrogen content and the nitrogen cycling genes showed negative relationships with wheat yields. Together, these results revealed that straw biochar enhanced soil resource availability but suppressed microbial metabolism genes in the rhizosphere from wheat, supporting the idea that straw biochar serves as a nutrient pool for crops. |
format | Online Article Text |
id | pubmed-10533193 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105331932023-09-28 Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat Gong, Xin Li, Sixian Wu, Zelu Alhaj Hamoud, Yousef Shaghaleh, Hiba Kalkhajeh, Yusef Kianpoor Si, Chenxiao Zhu, Lin Ma, Chao Life (Basel) Communication Despite the well-documented role of biochar in promoting soil quality and crop productivity, the underlying biological mechanisms remain poorly understood. Here, we explored the effects of straw biochar on soil microbiome in the rhizosphere from wheat using metagenomic sequencing. Our results showed that straw return decreased the yields of wheat, while the straw biochar return increased the wheat yields. Further, both the richness and community composition confirmed different effects of the straw return and straw biochar return. The straw biochar return also resulted in greater rhizosphere effects from wheat, represented by resource availability, including soil organic carbon, soil total nitrogen, available phosphorus, and available potassium. The rhizosphere effects from wheat, represented by microbial metabolism genes involved in carbon, nitrogen, phosphorus, and potassium cycling, however, were decreased by straw biochar returning. In addition, the rhizosphere effects from nitrogen content and the nitrogen cycling genes showed negative relationships with wheat yields. Together, these results revealed that straw biochar enhanced soil resource availability but suppressed microbial metabolism genes in the rhizosphere from wheat, supporting the idea that straw biochar serves as a nutrient pool for crops. MDPI 2023-08-31 /pmc/articles/PMC10533193/ /pubmed/37763247 http://dx.doi.org/10.3390/life13091843 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Gong, Xin Li, Sixian Wu, Zelu Alhaj Hamoud, Yousef Shaghaleh, Hiba Kalkhajeh, Yusef Kianpoor Si, Chenxiao Zhu, Lin Ma, Chao Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat |
title | Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat |
title_full | Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat |
title_fullStr | Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat |
title_full_unstemmed | Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat |
title_short | Biochar Enhances Soil Resource Availability and Suppresses Microbial Metabolism Genes in the Rhizosphere of Wheat |
title_sort | biochar enhances soil resource availability and suppresses microbial metabolism genes in the rhizosphere of wheat |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533193/ https://www.ncbi.nlm.nih.gov/pubmed/37763247 http://dx.doi.org/10.3390/life13091843 |
work_keys_str_mv | AT gongxin biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT lisixian biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT wuzelu biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT alhajhamoudyousef biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT shaghalehhiba biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT kalkhajehyusefkianpoor biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT sichenxiao biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT zhulin biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat AT machao biocharenhancessoilresourceavailabilityandsuppressesmicrobialmetabolismgenesintherhizosphereofwheat |