Cargando…

Transgenic ferret models define pulmonary ionocyte diversity and function

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Feng, Gasser, Grace N., Lemire, Evan, Montoro, Daniel T., Jagadeesh, Karthik, Zhang, Yan, Duan, Yifan, Ievlev, Vitaly, Wells, Kristen L., Rotti, Pavana G., Shahin, Weam, Winter, Michael, Rosen, Bradley H., Evans, Idil, Cai, Qian, Yu, Miao, Walsh, Susan A., Acevedo, Michael R., Pandya, Darpan N., Akurathi, Vamsidhar, Dick, David W., Wadas, Thaddeus J., Joo, Nam Soo, Wine, Jeffrey J., Birket, Susan, Fernandez, Courtney M., Leung, Hui Min, Tearney, Guillermo J., Verkman, Alan S., Haggie, Peter M., Scott, Kathleen, Bartels, Douglas, Meyerholz, David K., Rowe, Steven M., Liu, Xiaoming, Yan, Ziying, Haber, Adam L., Sun, Xingshen, Engelhardt, John F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533402/
https://www.ncbi.nlm.nih.gov/pubmed/37730992
http://dx.doi.org/10.1038/s41586-023-06549-9
_version_ 1785112183904927744
author Yuan, Feng
Gasser, Grace N.
Lemire, Evan
Montoro, Daniel T.
Jagadeesh, Karthik
Zhang, Yan
Duan, Yifan
Ievlev, Vitaly
Wells, Kristen L.
Rotti, Pavana G.
Shahin, Weam
Winter, Michael
Rosen, Bradley H.
Evans, Idil
Cai, Qian
Yu, Miao
Walsh, Susan A.
Acevedo, Michael R.
Pandya, Darpan N.
Akurathi, Vamsidhar
Dick, David W.
Wadas, Thaddeus J.
Joo, Nam Soo
Wine, Jeffrey J.
Birket, Susan
Fernandez, Courtney M.
Leung, Hui Min
Tearney, Guillermo J.
Verkman, Alan S.
Haggie, Peter M.
Scott, Kathleen
Bartels, Douglas
Meyerholz, David K.
Rowe, Steven M.
Liu, Xiaoming
Yan, Ziying
Haber, Adam L.
Sun, Xingshen
Engelhardt, John F.
author_facet Yuan, Feng
Gasser, Grace N.
Lemire, Evan
Montoro, Daniel T.
Jagadeesh, Karthik
Zhang, Yan
Duan, Yifan
Ievlev, Vitaly
Wells, Kristen L.
Rotti, Pavana G.
Shahin, Weam
Winter, Michael
Rosen, Bradley H.
Evans, Idil
Cai, Qian
Yu, Miao
Walsh, Susan A.
Acevedo, Michael R.
Pandya, Darpan N.
Akurathi, Vamsidhar
Dick, David W.
Wadas, Thaddeus J.
Joo, Nam Soo
Wine, Jeffrey J.
Birket, Susan
Fernandez, Courtney M.
Leung, Hui Min
Tearney, Guillermo J.
Verkman, Alan S.
Haggie, Peter M.
Scott, Kathleen
Bartels, Douglas
Meyerholz, David K.
Rowe, Steven M.
Liu, Xiaoming
Yan, Ziying
Haber, Adam L.
Sun, Xingshen
Engelhardt, John F.
author_sort Yuan, Feng
collection PubMed
description Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans(1,2), but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-Cre(ERT2)::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-Cre(ERT2)::CFTR(L/L)). By comparing these models with cystic fibrosis ferrets(3,4), we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity—leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-Cre(ERT2)::CFTR(L/L) ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl(−) and HCO(3)(−). Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.
format Online
Article
Text
id pubmed-10533402
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105334022023-09-29 Transgenic ferret models define pulmonary ionocyte diversity and function Yuan, Feng Gasser, Grace N. Lemire, Evan Montoro, Daniel T. Jagadeesh, Karthik Zhang, Yan Duan, Yifan Ievlev, Vitaly Wells, Kristen L. Rotti, Pavana G. Shahin, Weam Winter, Michael Rosen, Bradley H. Evans, Idil Cai, Qian Yu, Miao Walsh, Susan A. Acevedo, Michael R. Pandya, Darpan N. Akurathi, Vamsidhar Dick, David W. Wadas, Thaddeus J. Joo, Nam Soo Wine, Jeffrey J. Birket, Susan Fernandez, Courtney M. Leung, Hui Min Tearney, Guillermo J. Verkman, Alan S. Haggie, Peter M. Scott, Kathleen Bartels, Douglas Meyerholz, David K. Rowe, Steven M. Liu, Xiaoming Yan, Ziying Haber, Adam L. Sun, Xingshen Engelhardt, John F. Nature Article Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans(1,2), but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-Cre(ERT2)::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-Cre(ERT2)::CFTR(L/L)). By comparing these models with cystic fibrosis ferrets(3,4), we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity—leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-Cre(ERT2)::CFTR(L/L) ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl(−) and HCO(3)(−). Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets. Nature Publishing Group UK 2023-09-20 2023 /pmc/articles/PMC10533402/ /pubmed/37730992 http://dx.doi.org/10.1038/s41586-023-06549-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Yuan, Feng
Gasser, Grace N.
Lemire, Evan
Montoro, Daniel T.
Jagadeesh, Karthik
Zhang, Yan
Duan, Yifan
Ievlev, Vitaly
Wells, Kristen L.
Rotti, Pavana G.
Shahin, Weam
Winter, Michael
Rosen, Bradley H.
Evans, Idil
Cai, Qian
Yu, Miao
Walsh, Susan A.
Acevedo, Michael R.
Pandya, Darpan N.
Akurathi, Vamsidhar
Dick, David W.
Wadas, Thaddeus J.
Joo, Nam Soo
Wine, Jeffrey J.
Birket, Susan
Fernandez, Courtney M.
Leung, Hui Min
Tearney, Guillermo J.
Verkman, Alan S.
Haggie, Peter M.
Scott, Kathleen
Bartels, Douglas
Meyerholz, David K.
Rowe, Steven M.
Liu, Xiaoming
Yan, Ziying
Haber, Adam L.
Sun, Xingshen
Engelhardt, John F.
Transgenic ferret models define pulmonary ionocyte diversity and function
title Transgenic ferret models define pulmonary ionocyte diversity and function
title_full Transgenic ferret models define pulmonary ionocyte diversity and function
title_fullStr Transgenic ferret models define pulmonary ionocyte diversity and function
title_full_unstemmed Transgenic ferret models define pulmonary ionocyte diversity and function
title_short Transgenic ferret models define pulmonary ionocyte diversity and function
title_sort transgenic ferret models define pulmonary ionocyte diversity and function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533402/
https://www.ncbi.nlm.nih.gov/pubmed/37730992
http://dx.doi.org/10.1038/s41586-023-06549-9
work_keys_str_mv AT yuanfeng transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT gassergracen transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT lemireevan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT montorodanielt transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT jagadeeshkarthik transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT zhangyan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT duanyifan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT ievlevvitaly transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT wellskristenl transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT rottipavanag transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT shahinweam transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT wintermichael transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT rosenbradleyh transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT evansidil transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT caiqian transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT yumiao transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT walshsusana transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT acevedomichaelr transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT pandyadarpann transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT akurathivamsidhar transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT dickdavidw transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT wadasthaddeusj transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT joonamsoo transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT winejeffreyj transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT birketsusan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT fernandezcourtneym transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT leunghuimin transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT tearneyguillermoj transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT verkmanalans transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT haggiepeterm transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT scottkathleen transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT bartelsdouglas transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT meyerholzdavidk transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT rowestevenm transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT liuxiaoming transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT yanziying transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT haberadaml transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT sunxingshen transgenicferretmodelsdefinepulmonaryionocytediversityandfunction
AT engelhardtjohnf transgenicferretmodelsdefinepulmonaryionocytediversityandfunction