Cargando…
Transgenic ferret models define pulmonary ionocyte diversity and function
Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533402/ https://www.ncbi.nlm.nih.gov/pubmed/37730992 http://dx.doi.org/10.1038/s41586-023-06549-9 |
_version_ | 1785112183904927744 |
---|---|
author | Yuan, Feng Gasser, Grace N. Lemire, Evan Montoro, Daniel T. Jagadeesh, Karthik Zhang, Yan Duan, Yifan Ievlev, Vitaly Wells, Kristen L. Rotti, Pavana G. Shahin, Weam Winter, Michael Rosen, Bradley H. Evans, Idil Cai, Qian Yu, Miao Walsh, Susan A. Acevedo, Michael R. Pandya, Darpan N. Akurathi, Vamsidhar Dick, David W. Wadas, Thaddeus J. Joo, Nam Soo Wine, Jeffrey J. Birket, Susan Fernandez, Courtney M. Leung, Hui Min Tearney, Guillermo J. Verkman, Alan S. Haggie, Peter M. Scott, Kathleen Bartels, Douglas Meyerholz, David K. Rowe, Steven M. Liu, Xiaoming Yan, Ziying Haber, Adam L. Sun, Xingshen Engelhardt, John F. |
author_facet | Yuan, Feng Gasser, Grace N. Lemire, Evan Montoro, Daniel T. Jagadeesh, Karthik Zhang, Yan Duan, Yifan Ievlev, Vitaly Wells, Kristen L. Rotti, Pavana G. Shahin, Weam Winter, Michael Rosen, Bradley H. Evans, Idil Cai, Qian Yu, Miao Walsh, Susan A. Acevedo, Michael R. Pandya, Darpan N. Akurathi, Vamsidhar Dick, David W. Wadas, Thaddeus J. Joo, Nam Soo Wine, Jeffrey J. Birket, Susan Fernandez, Courtney M. Leung, Hui Min Tearney, Guillermo J. Verkman, Alan S. Haggie, Peter M. Scott, Kathleen Bartels, Douglas Meyerholz, David K. Rowe, Steven M. Liu, Xiaoming Yan, Ziying Haber, Adam L. Sun, Xingshen Engelhardt, John F. |
author_sort | Yuan, Feng |
collection | PubMed |
description | Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans(1,2), but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-Cre(ERT2)::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-Cre(ERT2)::CFTR(L/L)). By comparing these models with cystic fibrosis ferrets(3,4), we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity—leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-Cre(ERT2)::CFTR(L/L) ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl(−) and HCO(3)(−). Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets. |
format | Online Article Text |
id | pubmed-10533402 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105334022023-09-29 Transgenic ferret models define pulmonary ionocyte diversity and function Yuan, Feng Gasser, Grace N. Lemire, Evan Montoro, Daniel T. Jagadeesh, Karthik Zhang, Yan Duan, Yifan Ievlev, Vitaly Wells, Kristen L. Rotti, Pavana G. Shahin, Weam Winter, Michael Rosen, Bradley H. Evans, Idil Cai, Qian Yu, Miao Walsh, Susan A. Acevedo, Michael R. Pandya, Darpan N. Akurathi, Vamsidhar Dick, David W. Wadas, Thaddeus J. Joo, Nam Soo Wine, Jeffrey J. Birket, Susan Fernandez, Courtney M. Leung, Hui Min Tearney, Guillermo J. Verkman, Alan S. Haggie, Peter M. Scott, Kathleen Bartels, Douglas Meyerholz, David K. Rowe, Steven M. Liu, Xiaoming Yan, Ziying Haber, Adam L. Sun, Xingshen Engelhardt, John F. Nature Article Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans(1,2), but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-Cre(ERT2)::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-Cre(ERT2)::CFTR(L/L)). By comparing these models with cystic fibrosis ferrets(3,4), we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity—leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-Cre(ERT2)::CFTR(L/L) ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl(−) and HCO(3)(−). Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets. Nature Publishing Group UK 2023-09-20 2023 /pmc/articles/PMC10533402/ /pubmed/37730992 http://dx.doi.org/10.1038/s41586-023-06549-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Yuan, Feng Gasser, Grace N. Lemire, Evan Montoro, Daniel T. Jagadeesh, Karthik Zhang, Yan Duan, Yifan Ievlev, Vitaly Wells, Kristen L. Rotti, Pavana G. Shahin, Weam Winter, Michael Rosen, Bradley H. Evans, Idil Cai, Qian Yu, Miao Walsh, Susan A. Acevedo, Michael R. Pandya, Darpan N. Akurathi, Vamsidhar Dick, David W. Wadas, Thaddeus J. Joo, Nam Soo Wine, Jeffrey J. Birket, Susan Fernandez, Courtney M. Leung, Hui Min Tearney, Guillermo J. Verkman, Alan S. Haggie, Peter M. Scott, Kathleen Bartels, Douglas Meyerholz, David K. Rowe, Steven M. Liu, Xiaoming Yan, Ziying Haber, Adam L. Sun, Xingshen Engelhardt, John F. Transgenic ferret models define pulmonary ionocyte diversity and function |
title | Transgenic ferret models define pulmonary ionocyte diversity and function |
title_full | Transgenic ferret models define pulmonary ionocyte diversity and function |
title_fullStr | Transgenic ferret models define pulmonary ionocyte diversity and function |
title_full_unstemmed | Transgenic ferret models define pulmonary ionocyte diversity and function |
title_short | Transgenic ferret models define pulmonary ionocyte diversity and function |
title_sort | transgenic ferret models define pulmonary ionocyte diversity and function |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533402/ https://www.ncbi.nlm.nih.gov/pubmed/37730992 http://dx.doi.org/10.1038/s41586-023-06549-9 |
work_keys_str_mv | AT yuanfeng transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT gassergracen transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT lemireevan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT montorodanielt transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT jagadeeshkarthik transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT zhangyan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT duanyifan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT ievlevvitaly transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT wellskristenl transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT rottipavanag transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT shahinweam transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT wintermichael transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT rosenbradleyh transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT evansidil transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT caiqian transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT yumiao transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT walshsusana transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT acevedomichaelr transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT pandyadarpann transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT akurathivamsidhar transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT dickdavidw transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT wadasthaddeusj transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT joonamsoo transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT winejeffreyj transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT birketsusan transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT fernandezcourtneym transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT leunghuimin transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT tearneyguillermoj transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT verkmanalans transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT haggiepeterm transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT scottkathleen transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT bartelsdouglas transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT meyerholzdavidk transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT rowestevenm transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT liuxiaoming transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT yanziying transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT haberadaml transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT sunxingshen transgenicferretmodelsdefinepulmonaryionocytediversityandfunction AT engelhardtjohnf transgenicferretmodelsdefinepulmonaryionocytediversityandfunction |