Cargando…
Sensitivity of an AI method for [(18)F]FDG PET/CT outcome prediction of diffuse large B-cell lymphoma patients to image reconstruction protocols
BACKGROUND: Convolutional neural networks (CNNs), applied to baseline [(18)F]-FDG PET/CT maximum intensity projections (MIPs), show potential for treatment outcome prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study is to investigate the robustness of CNN predictions to differ...
Autores principales: | Ferrández, Maria C., Golla, Sandeep S. V., Eertink, Jakoba J., de Vries, Bart M., Wiegers, Sanne E., Zwezerijnen, Gerben J. C., Pieplenbosch, Simone, Schilder, Louise, Heymans, Martijn W., Zijlstra, Josée M., Boellaard, Ronald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533444/ https://www.ncbi.nlm.nih.gov/pubmed/37758869 http://dx.doi.org/10.1186/s13550-023-01036-8 |
Ejemplares similares
-
Combatting the effect of image reconstruction settings on lymphoma [(18)F]FDG PET metabolic tumor volume assessment using various segmentation methods
por: Ferrández, Maria C., et al.
Publicado: (2022) -
An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
por: Ferrández, Maria C., et al.
Publicado: (2023) -
Reproducibility of [18F]FDG PET/CT liver SUV as reference or normalisation factor
por: Zwezerijnen, Gerben J. C., et al.
Publicado: (2022) -
External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients
por: Eertink, Jakoba J., et al.
Publicado: (2022) -
Prognostic model using (18)F-FDG PET radiomics predicts progression-free survival in relapsed/refractory Hodgkin lymphoma
por: Driessen, Julia, et al.
Publicado: (2023)