Cargando…

Encoding multistate charge order and chirality in endotaxial heterostructures

High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS(2) due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate s...

Descripción completa

Detalles Bibliográficos
Autores principales: Husremović, Samra, Goodge, Berit H., Erodici, Matthew P., Inzani, Katherine, Mier, Alberto, Ribet, Stephanie M., Bustillo, Karen C., Taniguchi, Takashi, Watanabe, Kenji, Ophus, Colin, Griffin, Sinéad M., Bediako, D. Kwabena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533556/
https://www.ncbi.nlm.nih.gov/pubmed/37758701
http://dx.doi.org/10.1038/s41467-023-41780-y
_version_ 1785112209290952704
author Husremović, Samra
Goodge, Berit H.
Erodici, Matthew P.
Inzani, Katherine
Mier, Alberto
Ribet, Stephanie M.
Bustillo, Karen C.
Taniguchi, Takashi
Watanabe, Kenji
Ophus, Colin
Griffin, Sinéad M.
Bediako, D. Kwabena
author_facet Husremović, Samra
Goodge, Berit H.
Erodici, Matthew P.
Inzani, Katherine
Mier, Alberto
Ribet, Stephanie M.
Bustillo, Karen C.
Taniguchi, Takashi
Watanabe, Kenji
Ophus, Colin
Griffin, Sinéad M.
Bediako, D. Kwabena
author_sort Husremović, Samra
collection PubMed
description High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS(2) due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS(2) devices. Here, we demonstrate the fabrication of nanothick verti-lateral H-TaS(2)/1T-TaS(2) heterostructures in which the number of endotaxial metallic H-TaS(2) monolayers dictates the number of resistance transitions in 1T-TaS(2) lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance.
format Online
Article
Text
id pubmed-10533556
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105335562023-09-29 Encoding multistate charge order and chirality in endotaxial heterostructures Husremović, Samra Goodge, Berit H. Erodici, Matthew P. Inzani, Katherine Mier, Alberto Ribet, Stephanie M. Bustillo, Karen C. Taniguchi, Takashi Watanabe, Kenji Ophus, Colin Griffin, Sinéad M. Bediako, D. Kwabena Nat Commun Article High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS(2) due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS(2) devices. Here, we demonstrate the fabrication of nanothick verti-lateral H-TaS(2)/1T-TaS(2) heterostructures in which the number of endotaxial metallic H-TaS(2) monolayers dictates the number of resistance transitions in 1T-TaS(2) lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance. Nature Publishing Group UK 2023-09-27 /pmc/articles/PMC10533556/ /pubmed/37758701 http://dx.doi.org/10.1038/s41467-023-41780-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Husremović, Samra
Goodge, Berit H.
Erodici, Matthew P.
Inzani, Katherine
Mier, Alberto
Ribet, Stephanie M.
Bustillo, Karen C.
Taniguchi, Takashi
Watanabe, Kenji
Ophus, Colin
Griffin, Sinéad M.
Bediako, D. Kwabena
Encoding multistate charge order and chirality in endotaxial heterostructures
title Encoding multistate charge order and chirality in endotaxial heterostructures
title_full Encoding multistate charge order and chirality in endotaxial heterostructures
title_fullStr Encoding multistate charge order and chirality in endotaxial heterostructures
title_full_unstemmed Encoding multistate charge order and chirality in endotaxial heterostructures
title_short Encoding multistate charge order and chirality in endotaxial heterostructures
title_sort encoding multistate charge order and chirality in endotaxial heterostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533556/
https://www.ncbi.nlm.nih.gov/pubmed/37758701
http://dx.doi.org/10.1038/s41467-023-41780-y
work_keys_str_mv AT husremovicsamra encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT goodgeberith encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT erodicimatthewp encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT inzanikatherine encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT mieralberto encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT ribetstephaniem encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT bustillokarenc encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT taniguchitakashi encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT watanabekenji encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT ophuscolin encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT griffinsineadm encodingmultistatechargeorderandchiralityinendotaxialheterostructures
AT bediakodkwabena encodingmultistatechargeorderandchiralityinendotaxialheterostructures