Cargando…
Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia
A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533597/ https://www.ncbi.nlm.nih.gov/pubmed/37452223 http://dx.doi.org/10.1007/s12035-023-03479-5 |
_version_ | 1785112218269908992 |
---|---|
author | Ziakova, Katarina Kovalska, Maria Pilchova, Ivana Dibdiakova, Katarina Brodnanova, Maria Pokusa, Michal Kalenska, Dagmar Racay, Peter |
author_facet | Ziakova, Katarina Kovalska, Maria Pilchova, Ivana Dibdiakova, Katarina Brodnanova, Maria Pokusa, Michal Kalenska, Dagmar Racay, Peter |
author_sort | Ziakova, Katarina |
collection | PubMed |
description | A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia. |
format | Online Article Text |
id | pubmed-10533597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-105335972023-09-29 Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia Ziakova, Katarina Kovalska, Maria Pilchova, Ivana Dibdiakova, Katarina Brodnanova, Maria Pokusa, Michal Kalenska, Dagmar Racay, Peter Mol Neurobiol Article A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia. Springer US 2023-07-14 2023 /pmc/articles/PMC10533597/ /pubmed/37452223 http://dx.doi.org/10.1007/s12035-023-03479-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ziakova, Katarina Kovalska, Maria Pilchova, Ivana Dibdiakova, Katarina Brodnanova, Maria Pokusa, Michal Kalenska, Dagmar Racay, Peter Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia |
title | Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia |
title_full | Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia |
title_fullStr | Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia |
title_full_unstemmed | Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia |
title_short | Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia |
title_sort | involvement of proteasomal and endoplasmic reticulum stress in neurodegeneration after global brain ischemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533597/ https://www.ncbi.nlm.nih.gov/pubmed/37452223 http://dx.doi.org/10.1007/s12035-023-03479-5 |
work_keys_str_mv | AT ziakovakatarina involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia AT kovalskamaria involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia AT pilchovaivana involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia AT dibdiakovakatarina involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia AT brodnanovamaria involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia AT pokusamichal involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia AT kalenskadagmar involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia AT racaypeter involvementofproteasomalandendoplasmicreticulumstressinneurodegenerationafterglobalbrainischemia |