Cargando…
Predictive scale-bridging simulations through active learning
Throughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in the number of mesh elements. For instance, quantitative predictions of transport i...
Autores principales: | Karra, Satish, Mehana, Mohamed, Lubbers, Nicholas, Chen, Yu, Diaw, Abdourahmane, Santos, Javier E., Pachalieva, Aleksandra, Pavel, Robert S., Haack, Jeffrey R., McKerns, Michael, Junghans, Christoph, Kang, Qinjun, Livescu, Daniel, Germann, Timothy C., Viswanathan, Hari S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533863/ https://www.ncbi.nlm.nih.gov/pubmed/37758757 http://dx.doi.org/10.1038/s41598-023-42823-6 |
Ejemplares similares
-
Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media
por: Lubbers, Nicholas, et al.
Publicado: (2020) -
Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management
por: Pachalieva, Aleksandra, et al.
Publicado: (2022) -
A Dataset of 3D Structural and Simulated Transport Properties of Complex Porous Media
por: Santos, Javier E., et al.
Publicado: (2022) -
A viscous quantum hydrodynamics model based on dynamic density functional theory
por: Diaw, Abdourahmane, et al.
Publicado: (2017) -
Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity
por: Chen, Li, et al.
Publicado: (2015)