Cargando…
Deep learning classification of systemic sclerosis from multi-site photoplethysmography signals
Introduction: A pilot study assessing a novel approach to identify patients with Systemic Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG) waveforms (“DL-PPG”). Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and reactive hyperaemi...
Autores principales: | Iqbal, Sadaf, Bacardit, Jaume, Griffiths, Bridget, Allen, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534001/ https://www.ncbi.nlm.nih.gov/pubmed/37781233 http://dx.doi.org/10.3389/fphys.2023.1242807 |
Ejemplares similares
-
Quantifying the Delays Between Multi-Site Photoplethysmography Pulse and Electrocardiogram R-R Interval Changes Under Slow-Paced Breathing
por: Allen, John
Publicado: (2019) -
Photoplethysmography upon cold stress—impact of measurement site and acquisition mode
por: Fleischhauer, Vincent, et al.
Publicado: (2023) -
Contactless photoplethysmography for assessment of small fiber neuropathy
por: Marcinkevics, Zbignevs, et al.
Publicado: (2023) -
A training pipeline of an arrhythmia classifier for atrial fibrillation detection using Photoplethysmography signal
por: Kudo, Sota, et al.
Publicado: (2023) -
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
por: Radha, Mustafa, et al.
Publicado: (2021)