Cargando…
Development of a multi-feature-combined model: proof-of-concept with application to local failure prediction of post-SBRT or surgery early-stage NSCLC patients
OBJECTIVE: To develop a Multi-Feature-Combined (MFC) model for proof-of-concept in predicting local failure (LR) in NSCLC patients after surgery or SBRT using pre-treatment CT images. This MFC model combines handcrafted radiomic features, deep radiomic features, and patient demographic information i...
Autores principales: | Yang, Zhenyu, Wang, Chunhao, Wang, Yuqi, Lafata, Kyle J., Zhang, Haozhao, Ackerson, Bradley G., Kelsey, Christopher, Tong, Betty, Yin, Fang-Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534017/ https://www.ncbi.nlm.nih.gov/pubmed/37781201 http://dx.doi.org/10.3389/fonc.2023.1185771 |
Ejemplares similares
-
An investigation of machine learning methods in delta-radiomics feature analysis
por: Chang, Yushi, et al.
Publicado: (2019) -
SBRT for centrally localized NSCLC – What is too central?
por: Roesch, J., et al.
Publicado: (2016) -
Neoadjuvant SBRT combined with immunotherapy in NSCLC: from mechanisms to therapy
por: Shi, Yanhong, et al.
Publicado: (2023) -
Post-Radiotherapy PET Image Outcome Prediction by Deep Learning Under Biological Model Guidance: A Feasibility Study of Oropharyngeal Cancer Application
por: Ji, Hangjie, et al.
Publicado: (2022) -
Long-term Clinical Outcomes and Safety Profile of SBRT for Centrally Located NSCLC
por: Arnett, Andrea L.H., et al.
Publicado: (2019)