Cargando…
Synthesis of lipoic acid ferulate and evaluation of its ability to preserve fish oil from oxidation during accelerated storage
Lipoic acid ferulate (LAF) was synthesized and its anti-free radical ability in vitro was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS) assays. Protective effects of LAF in stabilizing fish oil were tested, compared to antioxidant...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534146/ https://www.ncbi.nlm.nih.gov/pubmed/37780313 http://dx.doi.org/10.1016/j.fochx.2023.100802 |
Sumario: | Lipoic acid ferulate (LAF) was synthesized and its anti-free radical ability in vitro was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS) assays. Protective effects of LAF in stabilizing fish oil were tested, compared to antioxidants such as lipoic acid, ferulic acid and tert-butylhydroxyquinone (TBHQ) by measuring peroxide values, thiobarbituric acid reactants, p-anisidine values, nuclear magnetic resonance (NMR) spectra and gas chromatography–mass spectrometry (GC–MS) spectra of fish oil during accelerated storage (12 days, 80 °C). The inhibitory effect of these antioxidants on fish oil oxidation followed the order TBHQ ≧ LAF > ferulic acid > lipoic acid. In addition, the omega-3 polyunsaturated fatty acids were the first to be oxidized. The formation of oxidation products followed a first-order kinetic model, and the addition of LAF effectively reduced the reaction rate constants. Therefore, LAF can effectively slow down the formation of oxidative products and prolong the shelf life of fish oil. |
---|