Cargando…

Hydro- and aerogels from quince seed gum and gelatin solutions

The composite hydro/aerogels were designed using gelatin and quince seed gum (QSG) at total polymer concentration (TPC) of 1, 1.5 and 2% and gelatin/QSG ratio of 1:0, 1:0.5 and 1:1. The gel syneresis decreased significantly with increase in TPC and QSG. Although, hydrogels with 2% TPC had remarkably...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadzadeh-Hashemi, Saba, Varidi, Mehdi, Nooshkam, Majid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534173/
https://www.ncbi.nlm.nih.gov/pubmed/37780320
http://dx.doi.org/10.1016/j.fochx.2023.100813
Descripción
Sumario:The composite hydro/aerogels were designed using gelatin and quince seed gum (QSG) at total polymer concentration (TPC) of 1, 1.5 and 2% and gelatin/QSG ratio of 1:0, 1:0.5 and 1:1. The gel syneresis decreased significantly with increase in TPC and QSG. Although, hydrogels with 2% TPC had remarkably higher gel strength and elasticity than 1% TPC ones, the addition of high levels of QSG to the gelatin (i.e., gelatin/QSG 1:1) led to a decrease in its gel strength (∼0.97-fold) and elasticity (∼3,463-fold). The temperature-sweep test showed higher melting points in gelatin/QSG hydrogels (>60 °C) compared to the gelatin ones (∼58 °C). Additionally, QSG addition to the gelatin led to more porous networks with higher gel strength, thermal stability, and crystallinity, as observed by scanning electron microscopy, differential scanning calorimetry, and X-ray diffractometer. Therefore, QSG could be used as a natural hydrocolloid to modify gelatin functionality.