Cargando…
Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins
The age of an individual is an essential demographic parameter but is difficult to estimate without long‐term monitoring or invasive sampling. Epigenetic approaches are increasingly used to age organisms, including nonmodel organisms such as cetaceans. Māui dolphins (Cephalorhynchus hectori maui) ar...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534197/ https://www.ncbi.nlm.nih.gov/pubmed/37780090 http://dx.doi.org/10.1002/ece3.10562 |
_version_ | 1785112340174209024 |
---|---|
author | Hernandez, Keith M. O'Neill, Kaimyn B. Bors, Eleanor K. Steel, Debbie Zoller, Joseph A. Constantine, Rochelle Horvath, Steve Baker, C. Scott |
author_facet | Hernandez, Keith M. O'Neill, Kaimyn B. Bors, Eleanor K. Steel, Debbie Zoller, Joseph A. Constantine, Rochelle Horvath, Steve Baker, C. Scott |
author_sort | Hernandez, Keith M. |
collection | PubMed |
description | The age of an individual is an essential demographic parameter but is difficult to estimate without long‐term monitoring or invasive sampling. Epigenetic approaches are increasingly used to age organisms, including nonmodel organisms such as cetaceans. Māui dolphins (Cephalorhynchus hectori maui) are a critically endangered subspecies endemic to Aotearoa New Zealand, and the age structure of this population is important for informing conservation. Here we present an epigenetic clock for aging Māui and Hector's dolphins (C. h. hectori) developed from methylation data using DNA from tooth aged individuals (n = 48). Based on this training data set, the optimal model required only eight methylation sites, provided an age correlation of .95, and had a median absolute age error of 1.54 years. A leave‐one‐out cross‐validation analysis with the same parameters resulted in an age correlation of .87 and median absolute age error of 2.09 years. To improve age estimation, we included previously published beluga whale (Delphinapterus leucas) data to develop a joint beluga/dolphin clock, resulting in a clock with comparable performance and improved estimation of older individuals. Application of the models to DNA from skin biopsy samples of living Māui dolphins revealed a shift from a median age of 8–9 years to a younger population aged 7–8 years 10 years later. These models could be applied to other dolphin species and demonstrate the ability to construct a clock even when the number of known age samples is limited, removing this impediment to estimating demographic parameters vital to the conservation of critically endangered species. |
format | Online Article Text |
id | pubmed-10534197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105341972023-10-01 Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins Hernandez, Keith M. O'Neill, Kaimyn B. Bors, Eleanor K. Steel, Debbie Zoller, Joseph A. Constantine, Rochelle Horvath, Steve Baker, C. Scott Ecol Evol Research Articles The age of an individual is an essential demographic parameter but is difficult to estimate without long‐term monitoring or invasive sampling. Epigenetic approaches are increasingly used to age organisms, including nonmodel organisms such as cetaceans. Māui dolphins (Cephalorhynchus hectori maui) are a critically endangered subspecies endemic to Aotearoa New Zealand, and the age structure of this population is important for informing conservation. Here we present an epigenetic clock for aging Māui and Hector's dolphins (C. h. hectori) developed from methylation data using DNA from tooth aged individuals (n = 48). Based on this training data set, the optimal model required only eight methylation sites, provided an age correlation of .95, and had a median absolute age error of 1.54 years. A leave‐one‐out cross‐validation analysis with the same parameters resulted in an age correlation of .87 and median absolute age error of 2.09 years. To improve age estimation, we included previously published beluga whale (Delphinapterus leucas) data to develop a joint beluga/dolphin clock, resulting in a clock with comparable performance and improved estimation of older individuals. Application of the models to DNA from skin biopsy samples of living Māui dolphins revealed a shift from a median age of 8–9 years to a younger population aged 7–8 years 10 years later. These models could be applied to other dolphin species and demonstrate the ability to construct a clock even when the number of known age samples is limited, removing this impediment to estimating demographic parameters vital to the conservation of critically endangered species. John Wiley and Sons Inc. 2023-09-28 /pmc/articles/PMC10534197/ /pubmed/37780090 http://dx.doi.org/10.1002/ece3.10562 Text en © 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Hernandez, Keith M. O'Neill, Kaimyn B. Bors, Eleanor K. Steel, Debbie Zoller, Joseph A. Constantine, Rochelle Horvath, Steve Baker, C. Scott Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins |
title | Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins |
title_full | Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins |
title_fullStr | Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins |
title_full_unstemmed | Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins |
title_short | Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins |
title_sort | using epigenetic clocks to investigate changes in the age structure of critically endangered māui dolphins |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534197/ https://www.ncbi.nlm.nih.gov/pubmed/37780090 http://dx.doi.org/10.1002/ece3.10562 |
work_keys_str_mv | AT hernandezkeithm usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins AT oneillkaimynb usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins AT borseleanork usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins AT steeldebbie usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins AT zollerjosepha usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins AT constantinerochelle usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins AT horvathsteve usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins AT bakercscott usingepigeneticclockstoinvestigatechangesintheagestructureofcriticallyendangeredmauidolphins |