Cargando…
Machine learning applications for multi-source data of edible crops: A review of current trends and future prospects
The quality and safety of edible crops are key links inseparable from human health and nutrition. In the era of rapid development of artificial intelligence, using it to mine multi-source information on edible crops provides new opportunities for industrial development and market supervision of edib...
Autores principales: | Zhang, Yanying, Wang, Yuanzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534232/ https://www.ncbi.nlm.nih.gov/pubmed/37780348 http://dx.doi.org/10.1016/j.fochx.2023.100860 |
Ejemplares similares
-
Phenotyping for waterlogging tolerance in crops: current trends and future prospects
por: Langan, Patrick, et al.
Publicado: (2022) -
Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects
por: Aremu, Adeyemi O., et al.
Publicado: (2020) -
Using machine learning for crop yield prediction in the past or the future
por: Morales, Alejandro, et al.
Publicado: (2023) -
A cross talk between the immunization and edible vaccine: Current challenges and future prospects
por: Sahoo, Ankit, et al.
Publicado: (2020) -
Edible and medicinal fungi breeding techniques, a review: Current status and future prospects
por: Dong, Yating, et al.
Publicado: (2022)