Cargando…

Effect of Thermal Aging on Mechanical Properties and Morphology of GF/PBT Composites

The effects of thermal aging at 85~145 °C in air on the tensile and flexural mechanical properties of 20% glass fiber (GF)-reinforced commercial grade polybutylene terephthalate (PBT) composites were studied. The results showed that as the aging temperature increased, the tensile and flexural streng...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xiuqi, Deng, Jiangang, Nie, Siyu, Lan, Zhenbo, Xu, Zhuolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534368/
https://www.ncbi.nlm.nih.gov/pubmed/37765652
http://dx.doi.org/10.3390/polym15183798
Descripción
Sumario:The effects of thermal aging at 85~145 °C in air on the tensile and flexural mechanical properties of 20% glass fiber (GF)-reinforced commercial grade polybutylene terephthalate (PBT) composites were studied. The results showed that as the aging temperature increased, the tensile and flexural strength of the GF/PBT composites significantly decreased. However, the elastic modulus of the composites was almost independent of aging. As the aging temperature increased, the separation between GF and the PBT matrix became more pronounced, and the fibers exposed on the surface of the matrix became clearer and smoother, indicating a decrease in interfacial adhesion between the PBT matrix and GF. The reason for this decrease in strength and brittle fracture of composites is the interface damage between the GF and PBT matrix caused by the difference in their thermal expansion coefficients during thermal aging.