Cargando…
The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review
Response to radiotherapy (RT) includes tissue toxicity, which may involve inflammatory reactions. We aimed to compare changes in metabolic patterns induced at the systemic level by radiation and inflammation itself. Patients treated with RT due to head and neck cancer and patients with inflammation-...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534379/ https://www.ncbi.nlm.nih.gov/pubmed/37755280 http://dx.doi.org/10.3390/metabo13091000 |
_version_ | 1785112380382904320 |
---|---|
author | Jelonek, Karol Mrowiec, Katarzyna Gabryś, Dorota Widłak, Piotr |
author_facet | Jelonek, Karol Mrowiec, Katarzyna Gabryś, Dorota Widłak, Piotr |
author_sort | Jelonek, Karol |
collection | PubMed |
description | Response to radiotherapy (RT) includes tissue toxicity, which may involve inflammatory reactions. We aimed to compare changes in metabolic patterns induced at the systemic level by radiation and inflammation itself. Patients treated with RT due to head and neck cancer and patients with inflammation-related diseases located in the corresponding anatomical regions were selected. PubMed and Web of Science databases were searched from 1 January 2000 to 10 August 2023. Twenty-five relevant studies where serum/plasma metabolic profiles were analyzed using different metabolomics approaches were identified. The studies showed different metabolic patterns of acute and chronic inflammatory diseases, yet changes in metabolites linked to the urea cycle and metabolism of arginine and proline were common features of both conditions. Although the reviewed reports showed only a few specific metabolites common for early RT response and inflammatory diseases, partly due to differences in metabolomics approaches, several common metabolic pathways linked to metabolites affected by radiation and inflammation were revealed. They included pathways involved in energy metabolism (e.g., metabolism of ketone bodies, mitochondrial electron transport chain, Warburg effect, citric acid cycle, urea cycle) and metabolism of certain amino acids (Arg, Pro, Gly, Ser, Met, Ala, Glu) and lipids (glycerolipids, branched-chain fatty acids). However, metabolites common for RT and inflammation-related diseases could show opposite patterns of changes. This could be exemplified by the lysophosphatidylcholine to phosphatidylcholine ratio (LPC/PC) that increased during chronic inflammation and decreased during the early phase of response to RT. One should be aware of dynamic metabolic changes during different phases of response to radiation, which involve increased levels of LPC in later phases. Hence, metabolomics studies that would address molecular features of both types of biological responses using comparable analytical and clinical approaches are needed to unravel the complexities of these phenomena, ultimately contributing to a deeper understanding of their impact on biological systems. |
format | Online Article Text |
id | pubmed-10534379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105343792023-09-29 The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review Jelonek, Karol Mrowiec, Katarzyna Gabryś, Dorota Widłak, Piotr Metabolites Systematic Review Response to radiotherapy (RT) includes tissue toxicity, which may involve inflammatory reactions. We aimed to compare changes in metabolic patterns induced at the systemic level by radiation and inflammation itself. Patients treated with RT due to head and neck cancer and patients with inflammation-related diseases located in the corresponding anatomical regions were selected. PubMed and Web of Science databases were searched from 1 January 2000 to 10 August 2023. Twenty-five relevant studies where serum/plasma metabolic profiles were analyzed using different metabolomics approaches were identified. The studies showed different metabolic patterns of acute and chronic inflammatory diseases, yet changes in metabolites linked to the urea cycle and metabolism of arginine and proline were common features of both conditions. Although the reviewed reports showed only a few specific metabolites common for early RT response and inflammatory diseases, partly due to differences in metabolomics approaches, several common metabolic pathways linked to metabolites affected by radiation and inflammation were revealed. They included pathways involved in energy metabolism (e.g., metabolism of ketone bodies, mitochondrial electron transport chain, Warburg effect, citric acid cycle, urea cycle) and metabolism of certain amino acids (Arg, Pro, Gly, Ser, Met, Ala, Glu) and lipids (glycerolipids, branched-chain fatty acids). However, metabolites common for RT and inflammation-related diseases could show opposite patterns of changes. This could be exemplified by the lysophosphatidylcholine to phosphatidylcholine ratio (LPC/PC) that increased during chronic inflammation and decreased during the early phase of response to RT. One should be aware of dynamic metabolic changes during different phases of response to radiation, which involve increased levels of LPC in later phases. Hence, metabolomics studies that would address molecular features of both types of biological responses using comparable analytical and clinical approaches are needed to unravel the complexities of these phenomena, ultimately contributing to a deeper understanding of their impact on biological systems. MDPI 2023-09-09 /pmc/articles/PMC10534379/ /pubmed/37755280 http://dx.doi.org/10.3390/metabo13091000 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Systematic Review Jelonek, Karol Mrowiec, Katarzyna Gabryś, Dorota Widłak, Piotr The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review |
title | The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review |
title_full | The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review |
title_fullStr | The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review |
title_full_unstemmed | The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review |
title_short | The Metabolic Footprint of Systemic Effects in the Blood Caused by Radiotherapy and Inflammatory Conditions: A Systematic Review |
title_sort | metabolic footprint of systemic effects in the blood caused by radiotherapy and inflammatory conditions: a systematic review |
topic | Systematic Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534379/ https://www.ncbi.nlm.nih.gov/pubmed/37755280 http://dx.doi.org/10.3390/metabo13091000 |
work_keys_str_mv | AT jelonekkarol themetabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview AT mrowieckatarzyna themetabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview AT gabrysdorota themetabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview AT widłakpiotr themetabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview AT jelonekkarol metabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview AT mrowieckatarzyna metabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview AT gabrysdorota metabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview AT widłakpiotr metabolicfootprintofsystemiceffectsinthebloodcausedbyradiotherapyandinflammatoryconditionsasystematicreview |