Cargando…

Effect of Multiple Structural Parameters on the Performance of a Micromixer with Baffles, Obstacles, and Gaps

As an essential component of chip laboratories and microfluidic systems, micromixers are widely used in fields such as chemical and biological analysis. In this work, a square cavity micromixer with multiple structural parameters (baffles, obstacles, and gaps) has been proposed to further improve th...

Descripción completa

Detalles Bibliográficos
Autores principales: Nai, Jiacheng, Zhang, Feng, Dong, Peng, Bai, Fan, Fu, Ting, Wang, Jiangbo, Ge, Anle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534435/
https://www.ncbi.nlm.nih.gov/pubmed/37763914
http://dx.doi.org/10.3390/mi14091750
Descripción
Sumario:As an essential component of chip laboratories and microfluidic systems, micromixers are widely used in fields such as chemical and biological analysis. In this work, a square cavity micromixer with multiple structural parameters (baffles, obstacles, and gaps) has been proposed to further improve the mixing performance of micromixers. This study examines the comprehensive effects of various structural parameters on mixing performance. The impact of baffle length, obstacle length-to-width ratio, gap width, and obstacle shape on the mixing index and pressure drop were numerically studied at different Reynolds numbers (Re). The results show that the mixing index increases with baffle length and obstacle length-to-width ratio and decreases with gap width at Re = 0.1, 1, 10, 20, 40, and 60. The mixing index can reach more than 0.98 in the range of Re ≥ 20 when the baffle length is 150 μm, the obstacle length-to-width ratio is 600/100, and the gap width is 200 μm. The pressure drop of the microchannel is proportional to baffle length and obstacle length-to-width ratio. Combining baffles and obstacles can further improve the mixing performance of square cavity micromixers. A longer baffle length, larger obstacle length-to-width ratio, narrower gap width, and a more symmetrical structure are conducive to improving the mixing index. However, the impact of pressure drop must also be considered comprehensively. The research results provide references and new ideas for passive micromixer structural design.