Cargando…

Implementation of MEC-Assisted Collective Perception in an Integrated Artery/Simu5G Simulation Framework

Advanced vehicle-to-everything (V2X) safety applications must operate with ultra-low latency and be highly reliable. Therefore, they require sophisticated supporting technologies. This is especially true for cooperative applications, such as Collective Perception (CP), where a large amount of data c...

Descripción completa

Detalles Bibliográficos
Autores principales: Kovács, Gergely Attila, Bokor, László
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534514/
https://www.ncbi.nlm.nih.gov/pubmed/37766023
http://dx.doi.org/10.3390/s23187968
Descripción
Sumario:Advanced vehicle-to-everything (V2X) safety applications must operate with ultra-low latency and be highly reliable. Therefore, they require sophisticated supporting technologies. This is especially true for cooperative applications, such as Collective Perception (CP), where a large amount of data constantly flows among vehicles and between vehicles and a network intelligence server. Both low and high-level support is needed for such an operation, meaning that various access technologies and other architectural elements also need to incorporate features enabling the effective use of V2X applications with strict requirements. The new 5G core architecture promises even more supporting technologies, like Multi-access Edge Computing (MEC). To test the performance of these technologies, an integrated framework for V2X simulations with 5G network elements is proposed in the form of combining Simu5G, a standalone 5G implementation, with the go-to V2X-simulator, Artery. As a first step toward a fully functional MEC-assisted CP Service, an extension to Simu5G’s edge implementation is introduced. The edge application is responsible for dispatching the Collective Perception Messages generated by the vehicles via the 5G connectivity so that a MEC server provided by the network can process incoming data. Simulation results prove the operability of the proposed integrated system and edge computing’s potential in assisting V2X scenarios.