Cargando…
Predicting Cardiovascular Disease Mortality: Leveraging Machine Learning for Comprehensive Assessment of Health and Nutrition Variables
Cardiovascular disease (CVD) is one of the primary causes of death around the world. This study aimed to identify risk factors associated with CVD mortality using data from the National Health and Nutrition Examination Survey (NHANES). We created three models focusing on dietary data, non-diet-relat...
Autores principales: | Martin-Morales, Agustin, Yamamoto, Masaki, Inoue, Mai, Vu, Thien, Dawadi, Research, Araki, Michihiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534618/ https://www.ncbi.nlm.nih.gov/pubmed/37764721 http://dx.doi.org/10.3390/nu15183937 |
Ejemplares similares
-
Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems
por: Kuusisto, Finn, et al.
Publicado: (2015) -
Leveraging explanations in interactive machine learning: An overview
por: Teso, Stefano, et al.
Publicado: (2023) -
Prediction of Metabolic Flux Distribution by Flux Sampling: As a Case Study, Acetate Production from Glucose in Escherichia coli
por: Kuriya, Yuki, et al.
Publicado: (2023) -
Leveraging Digital Health to Improve the Cardiovascular Health of Women
por: Azizi, Zahra, et al.
Publicado: (2023) -
Informal nutrition symposium: leveraging the microbiome (and the metabolome) for poultry production
por: Lee, Margie D., et al.
Publicado: (2021)