Cargando…
A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring
Extending the service life of ageing infrastructure, transportation structures, and processing and manufacturing plants in an era of limited resources has spurred extensive research and development in structural health monitoring systems and their integration. Even though piezoelectric transducers a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534628/ https://www.ncbi.nlm.nih.gov/pubmed/37766034 http://dx.doi.org/10.3390/s23187979 |
_version_ | 1785112439321264128 |
---|---|
author | Brunner, Andreas J. |
author_facet | Brunner, Andreas J. |
author_sort | Brunner, Andreas J. |
collection | PubMed |
description | Extending the service life of ageing infrastructure, transportation structures, and processing and manufacturing plants in an era of limited resources has spurred extensive research and development in structural health monitoring systems and their integration. Even though piezoelectric transducers are not the only sensor technology for SHM, they are widely used for data acquisition from, e.g., wave-based or vibrational non-destructive test methods such as ultrasonic guided waves, acoustic emission, electromechanical impedance, vibration monitoring or modal analysis, but also provide electric power via local energy harvesting for equipment operation. Operational environments include mechanical loads, e.g., stress induced deformations and vibrations, but also stochastic events, such as impact of foreign objects, temperature and humidity changes (e.g., daily and seasonal or process-dependent), and electromagnetic interference. All operator actions, correct or erroneous, as well as unintentional interference by unauthorized people, vandalism, or even cyber-attacks, may affect the performance of the transducers. In nuclear power plants, as well as in aerospace, structures and health monitoring systems are exposed to high-energy electromagnetic or particle radiation or (micro-)meteorite impact. Even if environmental effects are not detrimental for the transducers, they may induce large amounts of non-relevant signals, i.e., coming from sources not related to changes in structural integrity. Selected issues discussed comprise the durability of piezoelectric transducers, and of their coupling and mounting, but also detection and elimination of non-relevant signals and signal de-noising. For long-term service, developing concepts for maintenance and repair, or designing robust or redundant SHM systems, are of importance for the reliable long-term operation of transducers for structural health monitoring. |
format | Online Article Text |
id | pubmed-10534628 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105346282023-09-29 A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring Brunner, Andreas J. Sensors (Basel) Review Extending the service life of ageing infrastructure, transportation structures, and processing and manufacturing plants in an era of limited resources has spurred extensive research and development in structural health monitoring systems and their integration. Even though piezoelectric transducers are not the only sensor technology for SHM, they are widely used for data acquisition from, e.g., wave-based or vibrational non-destructive test methods such as ultrasonic guided waves, acoustic emission, electromechanical impedance, vibration monitoring or modal analysis, but also provide electric power via local energy harvesting for equipment operation. Operational environments include mechanical loads, e.g., stress induced deformations and vibrations, but also stochastic events, such as impact of foreign objects, temperature and humidity changes (e.g., daily and seasonal or process-dependent), and electromagnetic interference. All operator actions, correct or erroneous, as well as unintentional interference by unauthorized people, vandalism, or even cyber-attacks, may affect the performance of the transducers. In nuclear power plants, as well as in aerospace, structures and health monitoring systems are exposed to high-energy electromagnetic or particle radiation or (micro-)meteorite impact. Even if environmental effects are not detrimental for the transducers, they may induce large amounts of non-relevant signals, i.e., coming from sources not related to changes in structural integrity. Selected issues discussed comprise the durability of piezoelectric transducers, and of their coupling and mounting, but also detection and elimination of non-relevant signals and signal de-noising. For long-term service, developing concepts for maintenance and repair, or designing robust or redundant SHM systems, are of importance for the reliable long-term operation of transducers for structural health monitoring. MDPI 2023-09-19 /pmc/articles/PMC10534628/ /pubmed/37766034 http://dx.doi.org/10.3390/s23187979 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Brunner, Andreas J. A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring |
title | A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring |
title_full | A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring |
title_fullStr | A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring |
title_full_unstemmed | A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring |
title_short | A Review of Approaches for Mitigating Effects from Variable Operational Environments on Piezoelectric Transducers for Long-Term Structural Health Monitoring |
title_sort | review of approaches for mitigating effects from variable operational environments on piezoelectric transducers for long-term structural health monitoring |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534628/ https://www.ncbi.nlm.nih.gov/pubmed/37766034 http://dx.doi.org/10.3390/s23187979 |
work_keys_str_mv | AT brunnerandreasj areviewofapproachesformitigatingeffectsfromvariableoperationalenvironmentsonpiezoelectrictransducersforlongtermstructuralhealthmonitoring AT brunnerandreasj reviewofapproachesformitigatingeffectsfromvariableoperationalenvironmentsonpiezoelectrictransducersforlongtermstructuralhealthmonitoring |