Cargando…
Spectrum Sensing Method Based on Residual Dense Network and Attention
To address the problems of gradient vanishing and limited feature extraction capability of traditional CNN spectrum sensing methods in deep network structures and to effectively avoid network degradation issues under deep network structures, this paper proposes a collaborative spectrum sensing metho...
Autores principales: | Wang, Anyi, Meng, Qifeng, Wang, Mingbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534694/ https://www.ncbi.nlm.nih.gov/pubmed/37765847 http://dx.doi.org/10.3390/s23187791 |
Ejemplares similares
-
Mine MIMO Depth Receiver: An Intelligent Receiving Model Based on Densely Connected Convolutional Networks
por: Wang, Mingbo, et al.
Publicado: (2021) -
DAR-Net: Dense Attentional Residual Network for Vehicle Detection in Aerial Images
por: Li, Kaifeng, et al.
Publicado: (2021) -
Super-Resolution Reconstruction of Speckle Images of Engineered Bamboo Based on an Attention-Dense Residual Network
por: Yu, Wei, et al.
Publicado: (2022) -
RDASNet: Image Denoising via a Residual Dense Attention Similarity Network
por: Tao, Haowu, et al.
Publicado: (2023) -
Skin Lesion Classification Using Densely Connected Convolutional Networks with Attention Residual Learning
por: Wu, Jing, et al.
Publicado: (2020)