Cargando…
Pathogenicity of Aspergillus Airborne Fungal Species Collected from Indoor and Outdoor Public Areas in Tianjin, China
Airborne fungi play an important role in air pollution and may have various negative effects on human health. In particular, Aspergillus fungi are pathogenic to humans and several domestic animals. In this work, Aspergillus strains isolated from airborne fungal communities sampled from different ind...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534727/ https://www.ncbi.nlm.nih.gov/pubmed/37764962 http://dx.doi.org/10.3390/pathogens12091154 |
Sumario: | Airborne fungi play an important role in air pollution and may have various negative effects on human health. In particular, Aspergillus fungi are pathogenic to humans and several domestic animals. In this work, Aspergillus strains isolated from airborne fungal communities sampled from different indoor and outdoor environments in Tianjin University were tested for pathogenicity on Drosophila melanogaster. Airborne fungi were sampled using an HAS-100B air sampler, over a one-year sampling period. Isolated fungal strains were identified based on morphological and molecular analysis. The Aspergillus-centered study was conducted as part of a larger work focusing on the total airborne fungal community in the analyzed environments, which yielded 173 fungal species. In this context, the genus Aspergillus showed the second-highest species richness, with 14 isolated species. Pathogenicity tests performed on male adults of Drosophila melanogaster through a bodily contact bioassay showed that all analyzed airborne Aspergillus species were pathogenic to fruit flies, with high insect mortality rates and shortened lifespan. All the studied fungi induced 100% mortality of fruit flies within 30 culture days, with one exception constituted by A. creber (39 days), while the shortest lifespan (17 days) was observed in fruit flies treated with A. tubingensis. Our results allow us to hypothesize that the studied airborne fungal species may have a pathogenic effect on humans, given the affinity between fruit flies and the human immune system, and may help to explain the health risk linked with Aspergillus fungi exposure in densely populated environments. |
---|