Cargando…
Traffic Agents Trajectory Prediction Based on Spatial–Temporal Interaction Attention
Trajectory prediction aims to predict the movement intention of traffic participants in the future based on the historical observation trajectories. For traffic scenarios, pedestrians, vehicles and other traffic participants have social interaction of surrounding traffic participants in both time an...
Autores principales: | Xie, Jincan, Li, Shuang, Liu, Chunsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534871/ https://www.ncbi.nlm.nih.gov/pubmed/37765886 http://dx.doi.org/10.3390/s23187830 |
Ejemplares similares
-
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
por: Zhang, Qingyong, et al.
Publicado: (2023) -
ST-AFN: a spatial-temporal attention based fusion network for lane-level traffic flow prediction
por: Shen, Guojiang, et al.
Publicado: (2021) -
Holistic Spatio-Temporal Graph Attention for Trajectory Prediction in Vehicle–Pedestrian Interactions
por: Alghodhaifi, Hesham, et al.
Publicado: (2023)