Cargando…
Thermal Imaging Detection System: A Case Study for Indoor Environments
Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people—from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 therm...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534898/ https://www.ncbi.nlm.nih.gov/pubmed/37765879 http://dx.doi.org/10.3390/s23187822 |
_version_ | 1785112502567174144 |
---|---|
author | Drahanský, Martin Charvát, Michal Macek, Ivo Mohelníková, Jitka |
author_facet | Drahanský, Martin Charvát, Michal Macek, Ivo Mohelníková, Jitka |
author_sort | Drahanský, Martin |
collection | PubMed |
description | Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people—from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 thermal cameras and Raspberry Pi 3B+ computers was developed. The method creates a control and capture library for the Lepton 3.5 and a new person-detection technique that uses the state-of-the-art YOLO (You Only Look Once) real-time object detector based on deep neural networks. A thermal unit with an automated configuration using Ansible encapsulated in a custom 3D-printed enclosure was used. The unit has applications in simple thermal detection based on the modeling of complex scenes with polygonal boundaries and multiple thermal camera monitoring. An easily deployable person-detection and -localization system based on thermal imaging that supports multiple cameras and can serve as an input for other systems that take actions by knowing the positions of people in monitored environments was created. The thermal detection system was tested on a people-flow analysis performed in the Czech National Museum in Prague. The contribution of the presented method is the development of a small and simple detection system that is easily mountable with wide indoor as well as outdoor applications. The novelty of the system is in the utilization of the YOLO model for thermal data. |
format | Online Article Text |
id | pubmed-10534898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105348982023-09-29 Thermal Imaging Detection System: A Case Study for Indoor Environments Drahanský, Martin Charvát, Michal Macek, Ivo Mohelníková, Jitka Sensors (Basel) Article Currently, there is an increasing need for reliable mechanisms for automatically detecting and localizing people—from performing a people-flow analysis in museums and controlling smart homes to guarding hazardous areas like railway platforms. A method for detecting people using FLIR Lepton 3.5 thermal cameras and Raspberry Pi 3B+ computers was developed. The method creates a control and capture library for the Lepton 3.5 and a new person-detection technique that uses the state-of-the-art YOLO (You Only Look Once) real-time object detector based on deep neural networks. A thermal unit with an automated configuration using Ansible encapsulated in a custom 3D-printed enclosure was used. The unit has applications in simple thermal detection based on the modeling of complex scenes with polygonal boundaries and multiple thermal camera monitoring. An easily deployable person-detection and -localization system based on thermal imaging that supports multiple cameras and can serve as an input for other systems that take actions by knowing the positions of people in monitored environments was created. The thermal detection system was tested on a people-flow analysis performed in the Czech National Museum in Prague. The contribution of the presented method is the development of a small and simple detection system that is easily mountable with wide indoor as well as outdoor applications. The novelty of the system is in the utilization of the YOLO model for thermal data. MDPI 2023-09-12 /pmc/articles/PMC10534898/ /pubmed/37765879 http://dx.doi.org/10.3390/s23187822 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Drahanský, Martin Charvát, Michal Macek, Ivo Mohelníková, Jitka Thermal Imaging Detection System: A Case Study for Indoor Environments |
title | Thermal Imaging Detection System: A Case Study for Indoor Environments |
title_full | Thermal Imaging Detection System: A Case Study for Indoor Environments |
title_fullStr | Thermal Imaging Detection System: A Case Study for Indoor Environments |
title_full_unstemmed | Thermal Imaging Detection System: A Case Study for Indoor Environments |
title_short | Thermal Imaging Detection System: A Case Study for Indoor Environments |
title_sort | thermal imaging detection system: a case study for indoor environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534898/ https://www.ncbi.nlm.nih.gov/pubmed/37765879 http://dx.doi.org/10.3390/s23187822 |
work_keys_str_mv | AT drahanskymartin thermalimagingdetectionsystemacasestudyforindoorenvironments AT charvatmichal thermalimagingdetectionsystemacasestudyforindoorenvironments AT macekivo thermalimagingdetectionsystemacasestudyforindoorenvironments AT mohelnikovajitka thermalimagingdetectionsystemacasestudyforindoorenvironments |