Cargando…
Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study
OBJECTIVES: While Bayesian networks (BNs) represents a good approach to discussing factors related to many diseases, little attention has been poured into heart attack combined with hypertension (HAH) using BNs. This study aimed to explore the complex network relationships between HAH and its relate...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534983/ https://www.ncbi.nlm.nih.gov/pubmed/37780426 http://dx.doi.org/10.3389/fpubh.2023.1259718 |
_version_ | 1785112523409719296 |
---|---|
author | Zhang, Haifen Zhang, Xiaotong Yao, Xiaodong Wang, Qiang |
author_facet | Zhang, Haifen Zhang, Xiaotong Yao, Xiaodong Wang, Qiang |
author_sort | Zhang, Haifen |
collection | PubMed |
description | OBJECTIVES: While Bayesian networks (BNs) represents a good approach to discussing factors related to many diseases, little attention has been poured into heart attack combined with hypertension (HAH) using BNs. This study aimed to explore the complex network relationships between HAH and its related factors, and to achieve the Bayesian reasoning for HAH, thereby, offering a scientific reference for the prevention and treatment of HAH. METHODS: The data was downloaded from the Online Open Database of CHARLS 2018, a population-based longitudinal survey. In this study, we included 16 variables from data on demographic background, health status and functioning, and lifestyle. First, Elastic Net was first used to make a feature selection for highly-related variables for HAH, which were then included into BN model construction. The structural learning of BNs was achieved using Tabu algorithm and the parameter learning was conducted using maximum likelihood estimation. RESULTS: Among 19,752 individuals (9,313 men and 10,439 women) aged 64.73 ± 10.32 years, Among 19,752 individuals (9,313 men and 10,439 women), there are 8,370 ones without HAH (42.4%) and 11,382 ones with HAH (57.6%). What’s more, after feature selection using Elastic Net, Physical activity, Residence, Internet access, Asset, Marital status, Sleep duration, Social activity, Educational levels, Alcohol consumption, Nap, BADL, IADL, Self report on health, and age were included into BN model establishment. BNs were constructed with 15 nodes and 25 directed edges. The results showed that age, sleep duration, physical activity and self-report on health are directly associated with HAH. Besides, educational levels and IADL could indirectly connect to HAH through physical activity; IADL and BADL could indirectly connect to HAH through Self report on health. CONCLUSION: BNs could graphically reveal the complex network relationship between HAH and its related factors. Besides, BNs allows for risk reasoning for HAH through Bayesian reasoning, which is more consistent with clinical practice and thus holds some application prospects. |
format | Online Article Text |
id | pubmed-10534983 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105349832023-09-29 Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study Zhang, Haifen Zhang, Xiaotong Yao, Xiaodong Wang, Qiang Front Public Health Public Health OBJECTIVES: While Bayesian networks (BNs) represents a good approach to discussing factors related to many diseases, little attention has been poured into heart attack combined with hypertension (HAH) using BNs. This study aimed to explore the complex network relationships between HAH and its related factors, and to achieve the Bayesian reasoning for HAH, thereby, offering a scientific reference for the prevention and treatment of HAH. METHODS: The data was downloaded from the Online Open Database of CHARLS 2018, a population-based longitudinal survey. In this study, we included 16 variables from data on demographic background, health status and functioning, and lifestyle. First, Elastic Net was first used to make a feature selection for highly-related variables for HAH, which were then included into BN model construction. The structural learning of BNs was achieved using Tabu algorithm and the parameter learning was conducted using maximum likelihood estimation. RESULTS: Among 19,752 individuals (9,313 men and 10,439 women) aged 64.73 ± 10.32 years, Among 19,752 individuals (9,313 men and 10,439 women), there are 8,370 ones without HAH (42.4%) and 11,382 ones with HAH (57.6%). What’s more, after feature selection using Elastic Net, Physical activity, Residence, Internet access, Asset, Marital status, Sleep duration, Social activity, Educational levels, Alcohol consumption, Nap, BADL, IADL, Self report on health, and age were included into BN model establishment. BNs were constructed with 15 nodes and 25 directed edges. The results showed that age, sleep duration, physical activity and self-report on health are directly associated with HAH. Besides, educational levels and IADL could indirectly connect to HAH through physical activity; IADL and BADL could indirectly connect to HAH through Self report on health. CONCLUSION: BNs could graphically reveal the complex network relationship between HAH and its related factors. Besides, BNs allows for risk reasoning for HAH through Bayesian reasoning, which is more consistent with clinical practice and thus holds some application prospects. Frontiers Media S.A. 2023-09-13 /pmc/articles/PMC10534983/ /pubmed/37780426 http://dx.doi.org/10.3389/fpubh.2023.1259718 Text en Copyright © 2023 Zhang, Zhang, Yao and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Public Health Zhang, Haifen Zhang, Xiaotong Yao, Xiaodong Wang, Qiang Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study |
title | Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study |
title_full | Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study |
title_fullStr | Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study |
title_full_unstemmed | Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study |
title_short | Exploring factors related to heart attack complicated with hypertension using a Bayesian network model: a study based on the China Health and Retirement Longitudinal Study |
title_sort | exploring factors related to heart attack complicated with hypertension using a bayesian network model: a study based on the china health and retirement longitudinal study |
topic | Public Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534983/ https://www.ncbi.nlm.nih.gov/pubmed/37780426 http://dx.doi.org/10.3389/fpubh.2023.1259718 |
work_keys_str_mv | AT zhanghaifen exploringfactorsrelatedtoheartattackcomplicatedwithhypertensionusingabayesiannetworkmodelastudybasedonthechinahealthandretirementlongitudinalstudy AT zhangxiaotong exploringfactorsrelatedtoheartattackcomplicatedwithhypertensionusingabayesiannetworkmodelastudybasedonthechinahealthandretirementlongitudinalstudy AT yaoxiaodong exploringfactorsrelatedtoheartattackcomplicatedwithhypertensionusingabayesiannetworkmodelastudybasedonthechinahealthandretirementlongitudinalstudy AT wangqiang exploringfactorsrelatedtoheartattackcomplicatedwithhypertensionusingabayesiannetworkmodelastudybasedonthechinahealthandretirementlongitudinalstudy |