Cargando…
Nanoflake NiMn Layered Double Hydroxide Coated on Porous Membrane-like Ni-Foam for Sustainable and Efficient Electrocatalytic Oxygen Evolution
Layered double hydroxides (LDHs) have gained vast importance as an electrocatalyst for water electrolysis to produce carbon-neutral and clean hydrogen energy. In this work, we demonstrated the fabrication of nano-flake-like NiMn LDH thin film electrodes onto porous membrane-like Ni-foam by using a s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535034/ https://www.ncbi.nlm.nih.gov/pubmed/37755170 http://dx.doi.org/10.3390/membranes13090748 |
Sumario: | Layered double hydroxides (LDHs) have gained vast importance as an electrocatalyst for water electrolysis to produce carbon-neutral and clean hydrogen energy. In this work, we demonstrated the fabrication of nano-flake-like NiMn LDH thin film electrodes onto porous membrane-like Ni-foam by using a simple and cost-effective electrodeposition method for oxygen evolution reaction (OER). Various Ni(1-x)Mn(x) LDH (where x = 0.15, 0.25, 0.35, 0.50 and 0.75) thin film electrodes are utilized to achieve the optimal catalyst for an efficient and sustainable OER process. The various composition-dependent surface morphologies and porous-membrane-like structure provided the high electrochemical surface area along with abundant active sites facilitating the OER. The optimized catalyst referred to as Ni(0.65)Mn(0.35) showed excellent OER properties with an ultralow overpotential of 253 mV at a current density of 50 mAcm(−2), which outperforms other state-of-the art catalysts reported in the literature. The relatively low Tafel slope of 130 mV dec(−1) indicates faster and more favorable reaction kinetics for OER. Moreover, Ni(0.65)Mn(0.35) exhibits excellent durability over continuous operation of 20 h, indicating the great sustainability of the catalyst in an alkaline medium. This study provides knowledge for the fabrication and optimization of the OER catalyst electrode for water electrolysis. |
---|