Cargando…
Construction of Multifunctional Hierarchical Biofilms for Highly Sensitive and Weather-Resistant Fire Warning
Multifunctional biofilms with early fire-warning capabilities are highly necessary for various indoor and outdoor applications, but a rational design of intelligent fire alarm films with strong weather resistance remains a major challenge. Herein, a multiscale hierarchical biofilm based on lignocell...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535110/ https://www.ncbi.nlm.nih.gov/pubmed/37765520 http://dx.doi.org/10.3390/polym15183666 |
Sumario: | Multifunctional biofilms with early fire-warning capabilities are highly necessary for various indoor and outdoor applications, but a rational design of intelligent fire alarm films with strong weather resistance remains a major challenge. Herein, a multiscale hierarchical biofilm based on lignocellulose nanofibrils (LCNFs), carbon nanotubes (CNTs) and TiO(2) was developed through a vacuum-assisted alternate self-assembly and dipping method. Then, an early fire-warning system that changes from an insulating state to a conductive one was designed, relying on the rapid carbonization of LCNFs together with the unique electronic excitation characteristics of TiO(2). Typically, the L-CNT-TiO(2) film exhibited an ultrasensitive fire-response signal of ~0.30 s and a long-term warning time of ~1238 s when a fire disaster was about to occur, demonstrating a reliable fire-alarm performance and promising flame-resistance ability. More importantly, the L-CNT-TiO(2) biofilm also possessed a water contact angle (WCA) of 166 ± 1° and an ultraviolet protection factor (UPF) as high as 2000, resulting in excellent superhydrophobicity, antifouling, self-cleaning as well as incredible anti-ultraviolet (UV) capabilities. This work offers an innovative strategy for developing advanced intelligent films for fire safety and prevention applications, which holds great promise for the field of building materials. |
---|