Cargando…
Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2
The S-protein is the major antigen of the SARS-CoV-2 virus, against which protective antibodies are generated. The S-protein gene was used in adenoviral vectors and mRNA vaccines against COVID-19. While the primary function of antibodies is to bind to antigens, catalytic antibodies can hydrolyze var...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535122/ https://www.ncbi.nlm.nih.gov/pubmed/37766170 http://dx.doi.org/10.3390/vaccines11091494 |
_version_ | 1785112555139629056 |
---|---|
author | Timofeeva, Anna M. Sedykh, Sergey E. Sedykh, Tatyana A. Nevinsky, Georgy A. |
author_facet | Timofeeva, Anna M. Sedykh, Sergey E. Sedykh, Tatyana A. Nevinsky, Georgy A. |
author_sort | Timofeeva, Anna M. |
collection | PubMed |
description | The S-protein is the major antigen of the SARS-CoV-2 virus, against which protective antibodies are generated. The S-protein gene was used in adenoviral vectors and mRNA vaccines against COVID-19. While the primary function of antibodies is to bind to antigens, catalytic antibodies can hydrolyze various substrates, including nucleic acids, proteins, oligopeptides, polysaccharides, and some other molecules. In this study, antibody fractions with affinity for RBD and S-protein (RBD-IgG and S-IgG) were isolated from the blood of COVID-19 patients vaccinated with Sputnik V. The fractions were analyzed for their potential to hydrolyze 18-mer oligopeptides corresponding to linear fragments of the SARS-CoV-2 S-protein. Here, we show that the IgG antibodies hydrolyze six out of nine oligopeptides efficiently, with the antibodies of COVID-19-exposed donors demonstrating the most significant activity. The IgGs of control donors not exposed to SARS-CoV-2 were found to be inactive in oligopeptide hydrolysis. The antibodies of convalescents and vaccinated patients were found to hydrolyze oligopeptides in a wide pH range, with the optimal pH range between 6.5 and 7.5. The hydrolysis of most oligopeptides by RBD-IgG antibodies is inhibited by thiol protease inhibitors, whereas S-IgG active centers generally combine several types of proteolytic activities. Ca(2+) ions increase the catalytic activity of IgG preparations containing metalloprotease-like active centers. Thus, the proteolytic activity of natural antibodies against the SARS-CoV-2 protein is believed to be due to the similarity of catalytic antibodies’ active centers to canonical proteases. This work raises the question of the possible physiological role of proteolytic natural RBD-IgG and S-IgG resulting from vaccination and exposure to COVID-19. |
format | Online Article Text |
id | pubmed-10535122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105351222023-09-29 Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2 Timofeeva, Anna M. Sedykh, Sergey E. Sedykh, Tatyana A. Nevinsky, Georgy A. Vaccines (Basel) Article The S-protein is the major antigen of the SARS-CoV-2 virus, against which protective antibodies are generated. The S-protein gene was used in adenoviral vectors and mRNA vaccines against COVID-19. While the primary function of antibodies is to bind to antigens, catalytic antibodies can hydrolyze various substrates, including nucleic acids, proteins, oligopeptides, polysaccharides, and some other molecules. In this study, antibody fractions with affinity for RBD and S-protein (RBD-IgG and S-IgG) were isolated from the blood of COVID-19 patients vaccinated with Sputnik V. The fractions were analyzed for their potential to hydrolyze 18-mer oligopeptides corresponding to linear fragments of the SARS-CoV-2 S-protein. Here, we show that the IgG antibodies hydrolyze six out of nine oligopeptides efficiently, with the antibodies of COVID-19-exposed donors demonstrating the most significant activity. The IgGs of control donors not exposed to SARS-CoV-2 were found to be inactive in oligopeptide hydrolysis. The antibodies of convalescents and vaccinated patients were found to hydrolyze oligopeptides in a wide pH range, with the optimal pH range between 6.5 and 7.5. The hydrolysis of most oligopeptides by RBD-IgG antibodies is inhibited by thiol protease inhibitors, whereas S-IgG active centers generally combine several types of proteolytic activities. Ca(2+) ions increase the catalytic activity of IgG preparations containing metalloprotease-like active centers. Thus, the proteolytic activity of natural antibodies against the SARS-CoV-2 protein is believed to be due to the similarity of catalytic antibodies’ active centers to canonical proteases. This work raises the question of the possible physiological role of proteolytic natural RBD-IgG and S-IgG resulting from vaccination and exposure to COVID-19. MDPI 2023-09-15 /pmc/articles/PMC10535122/ /pubmed/37766170 http://dx.doi.org/10.3390/vaccines11091494 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Timofeeva, Anna M. Sedykh, Sergey E. Sedykh, Tatyana A. Nevinsky, Georgy A. Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2 |
title | Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2 |
title_full | Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2 |
title_fullStr | Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2 |
title_full_unstemmed | Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2 |
title_short | Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Recognize and Hydrolyze Oligopeptides Corresponding to the S-Protein of SARS-CoV-2 |
title_sort | natural antibodies produced in vaccinated patients and covid-19 convalescents recognize and hydrolyze oligopeptides corresponding to the s-protein of sars-cov-2 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535122/ https://www.ncbi.nlm.nih.gov/pubmed/37766170 http://dx.doi.org/10.3390/vaccines11091494 |
work_keys_str_mv | AT timofeevaannam naturalantibodiesproducedinvaccinatedpatientsandcovid19convalescentsrecognizeandhydrolyzeoligopeptidescorrespondingtothesproteinofsarscov2 AT sedykhsergeye naturalantibodiesproducedinvaccinatedpatientsandcovid19convalescentsrecognizeandhydrolyzeoligopeptidescorrespondingtothesproteinofsarscov2 AT sedykhtatyanaa naturalantibodiesproducedinvaccinatedpatientsandcovid19convalescentsrecognizeandhydrolyzeoligopeptidescorrespondingtothesproteinofsarscov2 AT nevinskygeorgya naturalantibodiesproducedinvaccinatedpatientsandcovid19convalescentsrecognizeandhydrolyzeoligopeptidescorrespondingtothesproteinofsarscov2 |