Cargando…
HIDM: Hybrid Intrusion Detection Model for Industry 4.0 Networks Using an Optimized CNN-LSTM with Transfer Learning
Industrial automation systems are undergoing a revolutionary change with the use of Internet-connected operating equipment and the adoption of cutting-edge advanced technology such as AI, IoT, cloud computing, and deep learning within business organizations. These innovative and additional solutions...
Autores principales: | Lilhore, Umesh Kumar, Manoharan, Poongodi, Simaiya, Sarita, Alroobaea, Roobaea, Alsafyani, Majed, Baqasah, Abdullah M., Dalal, Surjeet, Sharma, Ashish, Raahemifar, Kaamran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535139/ https://www.ncbi.nlm.nih.gov/pubmed/37765912 http://dx.doi.org/10.3390/s23187856 |
Ejemplares similares
-
Hybrid model for precise hepatitis-C classification using improved random forest and SVM method
por: Lilhore, Umesh Kumar, et al.
Publicado: (2023) -
Medical Image Despeckling Using the Invertible Sparse Fuzzy Wavelet Transform with Nature-Inspired Minibatch Water Wave Swarm Optimization
por: Amarnath, Ahila, et al.
Publicado: (2023) -
An Efficient Brain Tumor Segmentation Method Based on Adaptive Moving Self-Organizing Map and Fuzzy K-Mean Clustering
por: Dalal, Surjeet, et al.
Publicado: (2023) -
Hybrid CNN-LSTM model with efficient hyperparameter tuning for prediction of Parkinson’s disease
por: Lilhore, Umesh Kumar, et al.
Publicado: (2023) -
A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method
por: Balyan, Amit Kumar, et al.
Publicado: (2022)