Cargando…
Bayesian Statistics Improves Biological Interpretability of Metabolomics Data from Human Cohorts
Univariate analyses of metabolomics data currently follow a frequentist approach, using p-values to reject a null hypothesis. We here propose the use of Bayesian statistics to quantify evidence supporting different hypotheses and discriminate between the null hypothesis versus the lack of statistica...
Autores principales: | Brydges, Christopher, Che, Xiaoyu, Lipkin, Walter Ian, Fiehn, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535181/ https://www.ncbi.nlm.nih.gov/pubmed/37755264 http://dx.doi.org/10.3390/metabo13090984 |
Ejemplares similares
-
METABOLOMIC PROFILING AND PROGNOSTICATION IN COVID-19-RELATED ARDS
por: FURFARO, DAVID, et al.
Publicado: (2022) -
Metabox: A Toolbox for Metabolomic Data Analysis, Interpretation and Integrative Exploration
por: Wanichthanarak, Kwanjeera, et al.
Publicado: (2017) -
Bayesian statistical learning for big data biology
por: Yau, Christopher, et al.
Publicado: (2019) -
Metabolomic Evidence for Peroxisomal Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
por: Che, Xiaoyu, et al.
Publicado: (2022) -
High quality metabolomic data for Chlamydomonas reinhardtii
por: Lee, Do Yup, et al.
Publicado: (2008)