Cargando…
A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation
Indoor positioning using smartphones has garnered significant research attention. Geomagnetic and sensor data offer convenient methods for achieving this goal. However, conventional geomagnetic indoor positioning encounters several limitations, including low spatial resolution, poor accuracy, and st...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535216/ https://www.ncbi.nlm.nih.gov/pubmed/37765986 http://dx.doi.org/10.3390/s23187929 |
_version_ | 1785112577896873984 |
---|---|
author | Han, Yuchen Yu, Xuexiang Zhu, Ping Xiao, Xingxing Wei, Min Xie, Shicheng |
author_facet | Han, Yuchen Yu, Xuexiang Zhu, Ping Xiao, Xingxing Wei, Min Xie, Shicheng |
author_sort | Han, Yuchen |
collection | PubMed |
description | Indoor positioning using smartphones has garnered significant research attention. Geomagnetic and sensor data offer convenient methods for achieving this goal. However, conventional geomagnetic indoor positioning encounters several limitations, including low spatial resolution, poor accuracy, and stability issues. To address these challenges, we propose a fusion positioning approach. This approach integrates geomagnetic data, light intensity measurements, and inertial navigation data, utilizing a hierarchical optimization strategy. We employ a Tent-ASO-BP model that enhances the traditional Back Propagation (BP) algorithm through the integration of chaos mapping and Atom Search Optimization (ASO). In the offline phase, we construct a dual-resolution fingerprint database using Radial Basis Function (RBF) interpolation. This database amalgamates geomagnetic and light intensity data. The fused positioning results are obtained via the first layer of the Tent-ASO-BP model. We add a second Tent-ASO-BP layer and use an improved Pedestrian Dead Reckoning (PDR) method to derive the walking trajectory from smartphone sensors. In PDR, we apply the Biased Kalman Filter–Wavelet Transform (BKF-WT) for optimal heading estimation and set a time threshold to mitigate the effects of false peaks and valleys. The second-layer model combines geomagnetic and light intensity fusion coordinates with PDR coordinates. The experimental results demonstrate that our proposed positioning method not only effectively reduces positioning errors but also improves robustness across different application scenarios. |
format | Online Article Text |
id | pubmed-10535216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105352162023-09-29 A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation Han, Yuchen Yu, Xuexiang Zhu, Ping Xiao, Xingxing Wei, Min Xie, Shicheng Sensors (Basel) Article Indoor positioning using smartphones has garnered significant research attention. Geomagnetic and sensor data offer convenient methods for achieving this goal. However, conventional geomagnetic indoor positioning encounters several limitations, including low spatial resolution, poor accuracy, and stability issues. To address these challenges, we propose a fusion positioning approach. This approach integrates geomagnetic data, light intensity measurements, and inertial navigation data, utilizing a hierarchical optimization strategy. We employ a Tent-ASO-BP model that enhances the traditional Back Propagation (BP) algorithm through the integration of chaos mapping and Atom Search Optimization (ASO). In the offline phase, we construct a dual-resolution fingerprint database using Radial Basis Function (RBF) interpolation. This database amalgamates geomagnetic and light intensity data. The fused positioning results are obtained via the first layer of the Tent-ASO-BP model. We add a second Tent-ASO-BP layer and use an improved Pedestrian Dead Reckoning (PDR) method to derive the walking trajectory from smartphone sensors. In PDR, we apply the Biased Kalman Filter–Wavelet Transform (BKF-WT) for optimal heading estimation and set a time threshold to mitigate the effects of false peaks and valleys. The second-layer model combines geomagnetic and light intensity fusion coordinates with PDR coordinates. The experimental results demonstrate that our proposed positioning method not only effectively reduces positioning errors but also improves robustness across different application scenarios. MDPI 2023-09-16 /pmc/articles/PMC10535216/ /pubmed/37765986 http://dx.doi.org/10.3390/s23187929 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Han, Yuchen Yu, Xuexiang Zhu, Ping Xiao, Xingxing Wei, Min Xie, Shicheng A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation |
title | A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation |
title_full | A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation |
title_fullStr | A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation |
title_full_unstemmed | A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation |
title_short | A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation |
title_sort | fusion positioning method for indoor geomagnetic/light intensity/pedestrian dead reckoning based on dual-layer tent–atom search optimization–back propagation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535216/ https://www.ncbi.nlm.nih.gov/pubmed/37765986 http://dx.doi.org/10.3390/s23187929 |
work_keys_str_mv | AT hanyuchen afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT yuxuexiang afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT zhuping afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT xiaoxingxing afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT weimin afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT xieshicheng afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT hanyuchen fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT yuxuexiang fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT zhuping fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT xiaoxingxing fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT weimin fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation AT xieshicheng fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation |