Cargando…

A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation

Indoor positioning using smartphones has garnered significant research attention. Geomagnetic and sensor data offer convenient methods for achieving this goal. However, conventional geomagnetic indoor positioning encounters several limitations, including low spatial resolution, poor accuracy, and st...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Yuchen, Yu, Xuexiang, Zhu, Ping, Xiao, Xingxing, Wei, Min, Xie, Shicheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535216/
https://www.ncbi.nlm.nih.gov/pubmed/37765986
http://dx.doi.org/10.3390/s23187929
_version_ 1785112577896873984
author Han, Yuchen
Yu, Xuexiang
Zhu, Ping
Xiao, Xingxing
Wei, Min
Xie, Shicheng
author_facet Han, Yuchen
Yu, Xuexiang
Zhu, Ping
Xiao, Xingxing
Wei, Min
Xie, Shicheng
author_sort Han, Yuchen
collection PubMed
description Indoor positioning using smartphones has garnered significant research attention. Geomagnetic and sensor data offer convenient methods for achieving this goal. However, conventional geomagnetic indoor positioning encounters several limitations, including low spatial resolution, poor accuracy, and stability issues. To address these challenges, we propose a fusion positioning approach. This approach integrates geomagnetic data, light intensity measurements, and inertial navigation data, utilizing a hierarchical optimization strategy. We employ a Tent-ASO-BP model that enhances the traditional Back Propagation (BP) algorithm through the integration of chaos mapping and Atom Search Optimization (ASO). In the offline phase, we construct a dual-resolution fingerprint database using Radial Basis Function (RBF) interpolation. This database amalgamates geomagnetic and light intensity data. The fused positioning results are obtained via the first layer of the Tent-ASO-BP model. We add a second Tent-ASO-BP layer and use an improved Pedestrian Dead Reckoning (PDR) method to derive the walking trajectory from smartphone sensors. In PDR, we apply the Biased Kalman Filter–Wavelet Transform (BKF-WT) for optimal heading estimation and set a time threshold to mitigate the effects of false peaks and valleys. The second-layer model combines geomagnetic and light intensity fusion coordinates with PDR coordinates. The experimental results demonstrate that our proposed positioning method not only effectively reduces positioning errors but also improves robustness across different application scenarios.
format Online
Article
Text
id pubmed-10535216
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105352162023-09-29 A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation Han, Yuchen Yu, Xuexiang Zhu, Ping Xiao, Xingxing Wei, Min Xie, Shicheng Sensors (Basel) Article Indoor positioning using smartphones has garnered significant research attention. Geomagnetic and sensor data offer convenient methods for achieving this goal. However, conventional geomagnetic indoor positioning encounters several limitations, including low spatial resolution, poor accuracy, and stability issues. To address these challenges, we propose a fusion positioning approach. This approach integrates geomagnetic data, light intensity measurements, and inertial navigation data, utilizing a hierarchical optimization strategy. We employ a Tent-ASO-BP model that enhances the traditional Back Propagation (BP) algorithm through the integration of chaos mapping and Atom Search Optimization (ASO). In the offline phase, we construct a dual-resolution fingerprint database using Radial Basis Function (RBF) interpolation. This database amalgamates geomagnetic and light intensity data. The fused positioning results are obtained via the first layer of the Tent-ASO-BP model. We add a second Tent-ASO-BP layer and use an improved Pedestrian Dead Reckoning (PDR) method to derive the walking trajectory from smartphone sensors. In PDR, we apply the Biased Kalman Filter–Wavelet Transform (BKF-WT) for optimal heading estimation and set a time threshold to mitigate the effects of false peaks and valleys. The second-layer model combines geomagnetic and light intensity fusion coordinates with PDR coordinates. The experimental results demonstrate that our proposed positioning method not only effectively reduces positioning errors but also improves robustness across different application scenarios. MDPI 2023-09-16 /pmc/articles/PMC10535216/ /pubmed/37765986 http://dx.doi.org/10.3390/s23187929 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Han, Yuchen
Yu, Xuexiang
Zhu, Ping
Xiao, Xingxing
Wei, Min
Xie, Shicheng
A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation
title A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation
title_full A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation
title_fullStr A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation
title_full_unstemmed A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation
title_short A Fusion Positioning Method for Indoor Geomagnetic/Light Intensity/Pedestrian Dead Reckoning Based on Dual-Layer Tent–Atom Search Optimization–Back Propagation
title_sort fusion positioning method for indoor geomagnetic/light intensity/pedestrian dead reckoning based on dual-layer tent–atom search optimization–back propagation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535216/
https://www.ncbi.nlm.nih.gov/pubmed/37765986
http://dx.doi.org/10.3390/s23187929
work_keys_str_mv AT hanyuchen afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT yuxuexiang afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT zhuping afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT xiaoxingxing afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT weimin afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT xieshicheng afusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT hanyuchen fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT yuxuexiang fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT zhuping fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT xiaoxingxing fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT weimin fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation
AT xieshicheng fusionpositioningmethodforindoorgeomagneticlightintensitypedestriandeadreckoningbasedonduallayertentatomsearchoptimizationbackpropagation