Cargando…

Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes

Novel analogs of quinoline and isoindoline containing various heterocycles, such as tetrazole, triazole, pyrazole, and pyridine, were synthesized and characterized using FT-IR, NMR, and mass spectroscopy, and their antioxidant and antidiabetic activities were investigated. The previously synthesized...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Ghorbani, Mohammed, Alharbi, Osama, Al-Odayni, Abdel-Basit, Abduh, Naaser A. Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535292/
https://www.ncbi.nlm.nih.gov/pubmed/37765030
http://dx.doi.org/10.3390/ph16091222
_version_ 1785112596628635648
author Al-Ghorbani, Mohammed
Alharbi, Osama
Al-Odayni, Abdel-Basit
Abduh, Naaser A. Y.
author_facet Al-Ghorbani, Mohammed
Alharbi, Osama
Al-Odayni, Abdel-Basit
Abduh, Naaser A. Y.
author_sort Al-Ghorbani, Mohammed
collection PubMed
description Novel analogs of quinoline and isoindoline containing various heterocycles, such as tetrazole, triazole, pyrazole, and pyridine, were synthesized and characterized using FT-IR, NMR, and mass spectroscopy, and their antioxidant and antidiabetic activities were investigated. The previously synthesized compound 1 was utilized in conjugation with ketone-bearing tetrazole and isoindoline-1,3-dione to synthesize Schiff’s bases 2 and 3. Furthermore, hydrazide 1 was treated with aryledines to provide pyrazoles 4a–c. Compound 5 was obtained by treating 1 with potassium thiocyanate, which was then cyclized in a basic solution to afford triazole 6. On the other hand, pyridine derivatives 7a–d and 8a–d were synthesized using 2-(4-acetylphenyl)isoindoline-1,3-dione via a one-pot condensation reaction with aryl aldehydes and active methylene compounds. From the antioxidant and antidiabetic studies, compound 7d showed significant antioxidant activity with an EC(50) = 0.65, 0.52, and 0.93 mM in the free radical scavenging assays (DPPH, ABTS, and superoxide anion radicals). It also displayed noteworthy inhibitory activity against both enzymes α-glycosidase (IC(50): 0.07 mM) and α-amylase (0.21 mM) compared to acarbose (0.09 mM α-glycosidase and 0.25 mM for α-amylase), and higher than in the other compounds. During in silico assays, compound 7d exhibited favorable binding affinities towards both α-glycosidase (−10.9 kcal/mol) and α-amylase (−9.0 kcal/mol) compared to acarbose (−8.6 kcal/mol for α-glycosidase and −6.0 kcal/mol for α-amylase). The stability of 7d was demonstrated by molecular dynamics simulations and estimations of the binding free energy throughout the simulation session (100 ns).
format Online
Article
Text
id pubmed-10535292
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105352922023-09-29 Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes Al-Ghorbani, Mohammed Alharbi, Osama Al-Odayni, Abdel-Basit Abduh, Naaser A. Y. Pharmaceuticals (Basel) Article Novel analogs of quinoline and isoindoline containing various heterocycles, such as tetrazole, triazole, pyrazole, and pyridine, were synthesized and characterized using FT-IR, NMR, and mass spectroscopy, and their antioxidant and antidiabetic activities were investigated. The previously synthesized compound 1 was utilized in conjugation with ketone-bearing tetrazole and isoindoline-1,3-dione to synthesize Schiff’s bases 2 and 3. Furthermore, hydrazide 1 was treated with aryledines to provide pyrazoles 4a–c. Compound 5 was obtained by treating 1 with potassium thiocyanate, which was then cyclized in a basic solution to afford triazole 6. On the other hand, pyridine derivatives 7a–d and 8a–d were synthesized using 2-(4-acetylphenyl)isoindoline-1,3-dione via a one-pot condensation reaction with aryl aldehydes and active methylene compounds. From the antioxidant and antidiabetic studies, compound 7d showed significant antioxidant activity with an EC(50) = 0.65, 0.52, and 0.93 mM in the free radical scavenging assays (DPPH, ABTS, and superoxide anion radicals). It also displayed noteworthy inhibitory activity against both enzymes α-glycosidase (IC(50): 0.07 mM) and α-amylase (0.21 mM) compared to acarbose (0.09 mM α-glycosidase and 0.25 mM for α-amylase), and higher than in the other compounds. During in silico assays, compound 7d exhibited favorable binding affinities towards both α-glycosidase (−10.9 kcal/mol) and α-amylase (−9.0 kcal/mol) compared to acarbose (−8.6 kcal/mol for α-glycosidase and −6.0 kcal/mol for α-amylase). The stability of 7d was demonstrated by molecular dynamics simulations and estimations of the binding free energy throughout the simulation session (100 ns). MDPI 2023-08-30 /pmc/articles/PMC10535292/ /pubmed/37765030 http://dx.doi.org/10.3390/ph16091222 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Al-Ghorbani, Mohammed
Alharbi, Osama
Al-Odayni, Abdel-Basit
Abduh, Naaser A. Y.
Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes
title Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes
title_full Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes
title_fullStr Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes
title_full_unstemmed Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes
title_short Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes
title_sort quinoline- and isoindoline-integrated polycyclic compounds as antioxidant, and antidiabetic agents targeting the dual inhibition of α-glycosidase and α-amylase enzymes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535292/
https://www.ncbi.nlm.nih.gov/pubmed/37765030
http://dx.doi.org/10.3390/ph16091222
work_keys_str_mv AT alghorbanimohammed quinolineandisoindolineintegratedpolycycliccompoundsasantioxidantandantidiabeticagentstargetingthedualinhibitionofaglycosidaseandaamylaseenzymes
AT alharbiosama quinolineandisoindolineintegratedpolycycliccompoundsasantioxidantandantidiabeticagentstargetingthedualinhibitionofaglycosidaseandaamylaseenzymes
AT alodayniabdelbasit quinolineandisoindolineintegratedpolycycliccompoundsasantioxidantandantidiabeticagentstargetingthedualinhibitionofaglycosidaseandaamylaseenzymes
AT abduhnaaseray quinolineandisoindolineintegratedpolycycliccompoundsasantioxidantandantidiabeticagentstargetingthedualinhibitionofaglycosidaseandaamylaseenzymes