Cargando…
Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings
Shortwave infrared polarization imaging can increase the contrast of the target to the background to improve the detection system’s recognition ability. The division of focal plane polarization indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice due to the advantage...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535305/ https://www.ncbi.nlm.nih.gov/pubmed/37764541 http://dx.doi.org/10.3390/nano13182512 |
_version_ | 1785112599774363648 |
---|---|
author | Huang, Huijuan Yu, Yizhen Li, Xue Sun, Duo Zhang, Guixue Li, Tao Shao, Xiumei Yang, Bo |
author_facet | Huang, Huijuan Yu, Yizhen Li, Xue Sun, Duo Zhang, Guixue Li, Tao Shao, Xiumei Yang, Bo |
author_sort | Huang, Huijuan |
collection | PubMed |
description | Shortwave infrared polarization imaging can increase the contrast of the target to the background to improve the detection system’s recognition ability. The division of focal plane polarization indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice due to the advantages of compact structure, real-time imaging, and high stability. However, because of the mismatch between nanostructures and photosensitive pixels as well as the crosstalk among the different polarization directions, the currently reported extinction ratio (ER) of superpixel-polarization-integrated detectors cannot meet the needs of high-quality imaging. In this paper, a 1024 × 4 InGaAs FPA detector on-chip integrated with a linear polarization grating (LPG) was realized and tested. The detector displayed good performance throughout the 0.9–1.7 um band, and the ERs at 1064 nm, 1310 nm and 1550 nm reached up to 22:1, 29:1 and 46:1, respectively. For the crosstalk investigation, the optical simulation of the grating-integrated InGaAs pixel was carried out, and the limitation of the ER was calculated. The result showed that the scattering of incident light in the InP substrate led to the crosstalk. Moreover, the deviation of the actual grating morphology from the designed structure caused a further reduction in the ER. |
format | Online Article Text |
id | pubmed-10535305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105353052023-09-29 Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings Huang, Huijuan Yu, Yizhen Li, Xue Sun, Duo Zhang, Guixue Li, Tao Shao, Xiumei Yang, Bo Nanomaterials (Basel) Article Shortwave infrared polarization imaging can increase the contrast of the target to the background to improve the detection system’s recognition ability. The division of focal plane polarization indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice due to the advantages of compact structure, real-time imaging, and high stability. However, because of the mismatch between nanostructures and photosensitive pixels as well as the crosstalk among the different polarization directions, the currently reported extinction ratio (ER) of superpixel-polarization-integrated detectors cannot meet the needs of high-quality imaging. In this paper, a 1024 × 4 InGaAs FPA detector on-chip integrated with a linear polarization grating (LPG) was realized and tested. The detector displayed good performance throughout the 0.9–1.7 um band, and the ERs at 1064 nm, 1310 nm and 1550 nm reached up to 22:1, 29:1 and 46:1, respectively. For the crosstalk investigation, the optical simulation of the grating-integrated InGaAs pixel was carried out, and the limitation of the ER was calculated. The result showed that the scattering of incident light in the InP substrate led to the crosstalk. Moreover, the deviation of the actual grating morphology from the designed structure caused a further reduction in the ER. MDPI 2023-09-07 /pmc/articles/PMC10535305/ /pubmed/37764541 http://dx.doi.org/10.3390/nano13182512 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Huijuan Yu, Yizhen Li, Xue Sun, Duo Zhang, Guixue Li, Tao Shao, Xiumei Yang, Bo Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings |
title | Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings |
title_full | Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings |
title_fullStr | Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings |
title_full_unstemmed | Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings |
title_short | Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings |
title_sort | shortwave infrared ingaas detectors on-chip integrated with subwavelength polarization gratings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535305/ https://www.ncbi.nlm.nih.gov/pubmed/37764541 http://dx.doi.org/10.3390/nano13182512 |
work_keys_str_mv | AT huanghuijuan shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings AT yuyizhen shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings AT lixue shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings AT sunduo shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings AT zhangguixue shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings AT litao shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings AT shaoxiumei shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings AT yangbo shortwaveinfraredingaasdetectorsonchipintegratedwithsubwavelengthpolarizationgratings |