Cargando…
Attosecond-Level Delay Sensing via Temporal Quantum Erasing
Traditional Hong-Ou-Mandel (HOM) interferometry, insensitive to photons phase mismatch, proved to be a rugged single-photon interferometric technique. By introducing a post-beam splitter polarization-dependent delay, it is possible to recover phase-sensitive fringes, obtaining a temporal quantum era...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535312/ https://www.ncbi.nlm.nih.gov/pubmed/37765818 http://dx.doi.org/10.3390/s23187758 |
Sumario: | Traditional Hong-Ou-Mandel (HOM) interferometry, insensitive to photons phase mismatch, proved to be a rugged single-photon interferometric technique. By introducing a post-beam splitter polarization-dependent delay, it is possible to recover phase-sensitive fringes, obtaining a temporal quantum eraser that maintains the ruggedness of the original HOM with enhanced sensitivity. This setup shows promising applications in biological sensing and optical metrology, where high sensitivity requirements are coupled with the necessity to keep light intensity as low as possible to avoid power-induced degradation. In this paper, we developed a highly sensitive single photon birefringence-induced delay sensor operating in the telecom range (1550 nm). By using a temporal quantum eraser based on common path Hongr-Ou-Mandel Interferometry, we were able to achieve a sensitivity of 4 as for an integration time of [Formula: see text] s. |
---|